355 fall 2022 assignment 6

For this assignment, post CLARIFYING QUESTIONS ONLY on eclass. Posting
suggestions or your answers or hints on eclass or any other site — e.g. a discord server
or anywhere else — is plagiarism.

You can work on this assignment in groups of up to 5: within your group, you
can discuss any questions, but you cannot copy answers. Each student must submit
their own assignment. Discussing or copying with any student outside your group is
plagiarism.

We might ask you later to explain your answers: if you are unable to do so, we might
deduct some or all marks and report this to the faculty of science.

For this assigment, each student’s secret number is the 4th and 5th integer of their student id,
interpreted as a 2-digit number. E.g. if your id is ***91%* then your secret number is 91. Some
questions ask you for m, your secret number mod 3. E.g. if your secret number is 91, your m is 1.

Submit each answer on eclass.

1. If you do not answer this question we will not mark the assignment and your
assignment score will be 0.

(a) In your own words, state that you accept the plagiarism policy above.

(b) Give the names and ccids of all members of your discussion group (including yourself).
Explain how you worked together: e.g. discussed every question, discussed only questions 1
and 3 with group members X and Z, etc.



PO P1 P2

pile A 0101101 0101111 0100101
pile B 1010010 1010000 1011010
pile C 1100111 1100101 1101111
pile D 1110100 1110110 1111100

Each problem P,, above shows in binary the number of stones in four nim piles. For your
problem P,,, for each pile, give the number of stones that you would have to change that
pile to in order for the new nim position to be losing, and explain whether that is possible
(if the number goes down, it is possible, otherwise it’s not a legal nim move).

Answer like this: pile new number of stones
A 27
B 32
C 411
D 999

. If your m is O, then ¢ is 4 and k is 5. If your m is 1, then ¢ is 4 and k is 4. If your m is 2,
then ¢ is 6 and k is 3. Consider a nim position with ¢ piles: the number of stones in each
pile is a uniform-random k-bit number. (There are 2 2-bit numbers, 10 and 11. There are 4
3-bit numbers, 100, 101, 110, 111. There are 28! k-bit numbers.) What is the probability
that your nim position is a winning nim position?

Example question: here t =4 and k£ = 3.

Example answer: The position is losing if and only if the xor-sum of the pile numbers
is 0. Write the pile sizes in a bit array as shown on the course webpage, with each row
corresponding to a pile size.

The xor-sum will be 0 if and only if the xor-sum of each column of bits is 0. In each row, the
bit in column 1 is 1. There are an even number of rows, so the xor-sum of column 1 is 0. For
each other column j, there are ¢ bits and each is equally likely to be 1 or 0. From this you
can show that the probability that the number of 1s in this column is even is 1/2. So ...

answer like this (your arithemtic might be different):

... the probability that all columns have an even number of 1sis 1 x 1/2 x 1/2, so
the probability that the nim position is losing is 1/4, so
the probability that the nim position is winning is 1 — 1/4 = 3/4.



4. a) Below from left are puzzles Py, Py, P,. Your puzzle is P,,.

a b _c a _ b _c abC

N
N
N

For a player, a strategy is winning if it wins against every possible opponent strategy, i.e. if
the minimax value is win. A move is winning if it is the first move in a winning strategy.
For this hex position with Black to play, give all winning moves. For one winning move, give
a proof tree that shows how Black can win against any opponent move sequence. (Recall: a
proof tree is strategy tree that proves or establishes some bound on the minimax value of the
game. In your proof tree, each node with Black to play has 1 child; each node with White
to play has ¢ children, where ¢ is the number of empty cells in the position for that node.)

b) For the puzzle below with Black to play, 1.Black|c2] is a winning move. Briefly describe a
winning strategy, and give the number of nodes in a proof tree for this strategy (you do not
have to draw the whole strategy tree).

a_.b_c
1

N




5. Consider Pankratz’s visualizer http://webdocs.cs.ualberta.ca/~hayward/355/asn/hexviz/
of Yang’s winning 9x9 strategy. Below are move sequences 0, 1, 2 respectively. Use sequence
n, where n is your secret number.

sequence 0 2.Wled] 4.W(g2] 6.W[f2] 8.W[d7] 10.W[b8] 12.W|[c7]
sequence 1 2.W/gl] 4. W[e2] 6.W|[f4] 8. W[c3] 10.W[c9] 12.W[b§]
sequence 2 2.W|[f4] 4. W[d9] 6.W[c8] 8. W[f2] 10.W[g3] 12.W[e8]

a) Against Black’s winning strategy, assume that White starts with your sequence. Give
Black’s moves 1 to 13.

b) Continue this game from move 14. Assume that White suddenly decides to lose as quickly
as possible. Find a line of play so that the game ends soonest. Give all moves after move 13.
Prove that your answer is correct (hint: shortest path).

c¢) Assume that a Hex game continues after a) with Black continuing to follow Jing Yang’s
strategy and with White playing to prolong the game as long as possible. Give all moves
(from 14 to the end) in such a game. (There are many correct answers.)


http://webdocs.cs.ualberta.ca/~hayward/355/asn/hexviz/

6. Consider Hex program hex-3x3.py from the class repo.

a) On my home machine, when I play x b2 and then ask it who wins (? o), it answers x
can win, 677 calls. Using this program, find all winning first moves for x, and for each
give the number of calls.

b) 3x3-Hex is rotationally symmetric: if we rotate the board 180 degrees, it is identical to the
original board. Why are the answers to a) not rotationally symmetric, e.g. why is the number
of calls to solve the game after 1.B[a3] different from the number of calls after 1.B[c1]?

¢) When I ask the program who wins from the empty board if x plays first (? x), it says
x can win, 678 calls, so exactly 1 more call than after x b2, ? x. But if I change the
move order (line 109) to the natural move order (108), ? x takes 5677 calls. With this move
ordering, what first winning move is the program finding for Black? Explain briefly. In your
answer, give the number of calls made before it found the winning move, and the number of
calls when it tried the winning move.

d) Replace line 109 with a bad move ordering, i.e. a move ordering that you think might
maximize the number of calls needed to answer the question ? x from the empty board.
How many calls does your bad ordering achieve, and why do you think this might be the
maximum (or close to the maximum)?

e) Program hex-3x3.py uses function has_win to check whether a player has won the game.
Does has_win use breadth-first search, depth-first search, or neither? Explain briefly, and
explain why I used this approach for this program.

f) Briefly explain the differences between program hex-3x3.py and program hex-vc3.py.



