1. Consider three versions of tic-tac-toe.

U: usual tic-tac-toe,
A: game ends when x gets 3-in-a-row (in which case x wins) or when board full (in which case x wins if and only if x has 3-in-a-row, otherwise o wins),
B: game ends when x gets 3-in-a-row (in which case x wins) or when o gets 3-in-a-row (in which case o wins) or when board full (in which case x wins if and only if x has 3-in-a-row, otherwise o wins).

For each version, for each case, give the minimax outcome:
(a) if the first move is x to the middle
(b) if the first move is o to the middle
(c) if the first move is x to a side (not the middle, not a corner)
(d) if the first move is o to a side (not the middle, not a corner).

2. For any tic-tac-toe position \(P \), define \(Z(P) \) as the position obtained from \(P \) by changing every x to an o and vice versa. Here is an example:

\[
\begin{array}{ccc}
P & x & . . \\
. . & o & . x \\
o & x & o . \\
\end{array}
\]

For any tic-tac-toe position \(P \), define \(P_x \) as the game that starts at position \(P \) with x moving next. Define \(P_o \) similarly.

For each of I, II, give a proof or a counterexample. Hint: consider strategy stealing.

Claim I: for version B tic-tac-toe, if x has a winning strategy for \(P_x \), then o has a winning strategy for \(Z(P)_o \).

Claim II: for version B tic-tac-toe, if o has a winning strategy for \(P_o \), then x has a winning strategy for \(Z(P)_x \).

3. For Hex on the \(n \times n \) board, give Nash’s proof that the first player has a winning strategy.

4. For Hex on any rectangular board (so, any number \(m \) of rows, and any number \(n \) of columns), give Pierce’s proof that the game cannot end in a draw.
5. (i) In the simple Hex solver `hex3.py` in the class repo, explain the difference between `has_win()` and `can_win()`.

(ii) In `can_win()`, explain each line of code.

(iii) How long do you think this program should take to solve 3x3 positions? Explain briefly.

(iv) Do you think that a similar program would solve 5x5 positions in a reasonable amount of time? Why, or why not? What about 4x4 positions?

6. Find all winning first moves on the 3×3 Hex board. Check your answer using `hex3.py`.

7. Explain why the 4.3.2 side connection is a safe connection. (See chapter 9 in *Hex the full story*.

8. Explain how three semiconnections form the 7.6.5.2 side connection.

9. In figure 9.5 in *Hex the full story*, explain how we know that Black can win from this position, even if White plays next. In your own words, define *virtual connection*. Explain the difference between *virtual connection* and *semiconnection*.

10. For these 3x3 Hex positions, with * to play next, find all winning moves. Explain how you know each move is winning or losing.

 * * * * * * * * *
 o * o . o o . . o o o . . . o
 o . . . o o . . . o o . o . o
 o . . . o o . . . o o . . . o
 * * * * * * * * *

 * * *
 o * o . o
 o . . . o
 o . . . o
 * * *

 * * *
 o * o . o
 o . . . o
 o . . . o
 * * *

 * * *
 o * o . o
 o . . . o
 o . . . o
 * * *