

min cut

* unweighted graph G, n nodes

- * cut: bipartition of node set e.g. {a,d} {b,c,e,f}
- * an edge *crosses* a cut A,B
 if it has one end in each part
 e.g. {a,b}, {a,c}, {c,d}, {d,f}, {d,e}
- * cut size: number of edges that cross it e.g. 5

* min cut problem: given G, find any min cut

brute force min cut alg'm ?

randomized kruskal min cut

```
* unweighted graph, n nodes
* consider edges in uniform-random order
* apply Kruskal MST until exactly 2 components
* prob(this cut X is a min cut) >= 2/(n(n-1)) (1)
```

proof of (1) ?

above example

* prob(RKMC cut is min) >= 2/(6*5) = 1/15 = .0666...

* prob() = ?
 * unique min cut {{a, b, c}, {d, e, f}} Y
 * consider all 7! edge permutations
 * RKMC(permutation) returns Y iff
 - in perm'n, edge cd is last, or
 - in perm'n, edge cd is 2nd-last, or
 - in perm'n, edge cd is 3rd-last and last
 two edges are from different triangles
 * prob = 1/7 + 1/7 + (1/7)(3/5) exercise

= 13/35 = .3714...

* call RKMC t times, take smallest cut found * prob(best cut found is min cut) ?

t	1.0 -	(1.0 - 13/35)^t
1	.371	
2	.604	with bound (1)
3	.751	67 trials
4	.843	prob >= .99
5	.901	
6	.938	with $n = 100$
7	.961	bound (1)
8	.975	22794 trials
9	.984	prob >= .99
10	.990	

after 10 trials prob(min cut) >= .99

proof of (1)

* F is RKMC forest-so-far * after t steps, F has k = n-t components * number edges leaving component Cj of F ? * consider min cut Y, |Y| = y * { Cj, V - Cj} is a cut, so at least y edges leave Cj * so number edges between components is ky/2 * edges between components are exactly the RKMC-eligible edges * prob(next edge picked is in Y) <= y / (ky/2) = 2/k * prob(RKMC picks no edge from Y) n-2 n-3 n-4 3 2 1 2 >= --- --- ... - - - = ------n n-1 n-2 5 4 3 n(n-1)

exercise