
min cut

* unweighted graph G, n nodes
* cut: bipartition of node set
egg. $\{a, d\}\{b, c, e, f\}$
* an edge *crosses* a cut A,B if it has one end in each part egg. $\{a, b\},\{a, c\},\{c, d\},\{d, f\},\{d, e\}$
* cut size: number of edges that cross it egg. 5
* min cut problem: given G, find any min cut

brute force min cut alg'm ?

randomized kruskal min cut
* unweighted graph, n nodes
* consider edges in uniform-random order
* apply Kruskal MST until exactly 2 components
* prob(this cut X is a min cut) $>=2 /(n(n-1))$
proof of (1) ?

above example
* prob(RKMC cut is min) $>=2 /(6 * 5)=1 / 15=.0666 \ldots$
* prob() = ?
* unique \min cut $\{\{a, b, c\},\{d, e, f\}\} Y$
* consider all 7! edge permutations
* RKMC(permutation) returns Y iff
- in perm'n, edge cd is last, or
- in perm'n, edge cd is 2nd-last, or
- in perm'n, edge cd is 3rd-last and last two edges are from different triangles * prob $=1 / 7+1 / 7+(1 / 7)(3 / 5) \quad$ exercise
$=13 / 35=.3714 \ldots$

* call RKMC t times, take smallest cut found * prob(best cut found is min cut) ?

t	$1.0-(1.0-13 / 35)^{\wedge} \mathrm{t}$	
1	.371	
2	.604	with bound (1)
3	.751	67 trials
4	.843	prob $>=.99$
5	.901	
6	.938	with $\mathrm{n}=100$
7	.961	bound (1)
8	.975	22794 trials
9	.984	prob $>=.99$
10	.990	

after 10 trials
prob(min cut) >= . 99

proof of (1)

* F is RKMC forest-so-far
* after t steps, F has $\mathrm{k}=\mathrm{n}$-t components
* number edges leaving component Cj of F ?
* consider min cut $Y,|Y|=y$
* $\{\mathrm{Cj}, \mathrm{V}-\mathrm{Cj}\}$ is a cut, so
at least y edges leave Cj
* so number edges between components is ky/2
* edges between components are exactly the

RKMC-eligible edges

* prob(next edge picked is in Y)

$$
<=\mathrm{y} /(\mathrm{ky} / 2)=2 / \mathrm{k}
$$

* prob(RKMC picks no edge from Y)

$$
>=\begin{array}{cccccccc}
n-2 & n-3 & n-4 & & 3 & 2 & 1 & 2 \\
--- & --- & --- & \ldots & - & - & - \\
n & n-1 & n-2 & & 5 & 4 & 3 & =---- \\
n(n-1)
\end{array}
$$

exercise

