
rectilinear steiner tree problem

input: rectilinear grid graph, k terminals
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https://webdocs.cs.ualberta.ca/~hayward/304/asn/GanleyC94.pdf
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Hanan grid subgrid induced by lines through terminals
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above: Hanan grid of an 8 pins problem on some n×n grid

Theorem: some optimal RST uses only edges of Hanan grid

conclusion: k terminals, effective grid size ≤k×k < n×n



solving small RST problems (Polya how to solve it)
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bounding rectangle (brect) smallest containing rectangle

xspan brect horizontal span (above: 3)

yspan brect vertical span (above: 2)



solving small RST problems

• |T|=1 cost 0



solving small RST problems
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• |T|=2 cost = rectilinear distance = xspan + yspan



solving small RST problems
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• |T|=3 cost = xspan + yspan

proof: use shrink theorem

shrink theorem: assume left side has !1 pin, say at (0,j)

and that min x-coord. of other pins is v.

then some solution tree has path (0,j) to (v,j). (proof omitted)



illustrating shrink theorem
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shrink from left: move A from (0,1) to (1,1), add path
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continue on problem A(new), B, C
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shrink from top: move C from (3, 2) to (3, 1), add path
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shrink from right: move C from (3, 1) to (1, 1), add path
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subproblem has 2 terminals: AC, B solve it
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solving small RST problems: proof of claim when |T| = 3
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case 1: brect volume 0 (point/line), done (induction).

case 2: brect volume positive, 4 sides.

each side ≥ 1 pin (otw shrink brect)

so some side !1 pin (4 sides each ≥2 pins then ≥4 pins).

Now use the theorem.



solving small RST problems
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• |T|=4

claim: some side has !1 terminal or each corner has terminal

proof sketch: done unless each side has ≥ 2 terminals, but only 4
terminals, so if this happens must have each terminal in a corner.



solving small RST problems
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• |T|=4

• some side !1 terminal: use shrink theorem

• each corner has terminal:

cost = xspan + yspan + min(xspan, yspan)

(proof omitted)



• |T|=4 examples
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rectilinear caterpillars

• from side-terminal, horizontal or vertical spine

• each other terminal joins spine (exception: see Ganley et al.)

• three kinds of spines, shown above
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alg r-caterpillar(T)

c ← ∞

for each side with !1 terminal v:

for each of 3 kinds of spine:

d ← cost with spine from v

c ← min(c, d)

return c



DP decomposition idea

input: set T of terminals

• for all proper subsets T′, solve for T′

• assume solve(T) tree has cutpoint C,

with T−C subtreee terminal subsets C1, C2

• combine: return solve(C ∪ C1) + solve(C ∪ C2)
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decomposition example: assume solve(T) tree has

cutpoint C, subproblem terminal subsets AEC CBD
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combine solutions
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another decomposition example:

cutpoint C, subproblem terminal subsets AEC CBD
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combine solutions
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this approach works if, in some optimal solution,

some terminal is a cutpoint

what about this?
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only solution

A

B

C

D



full tree steiner tree, each terminal is leaf

full set steiner tree problem, each optimal tree is full

theorem: every optimal tree of a full set is r-caterpillar



alg Full Dynamic Program(T)

for all subsets T′ of T:

• f(T′) ← FDP(T′)

f(T) ← r-caterpillar(T) (best if full set)

for all possible cutpoints C, all subsets C1,C2:

• f(T) ← min{f(T), f(C ∪ C1) + f(C ∪ C2)}

return f(T)



alg FDP(T) ** Full Dynamic Program **

if |T| is 1: return 0

elif |T| is 2 or 3: return xspan + yspan

for m <- 2 to |T|: ** small to large **

for each subset C of T with |C| == m:

f[C] <- r-caterpillar(C) ** best if full set **

for each j in C: ** try j as cutpoint **

k <- 0 if j <> 0 else 1 ** k will always go in Ck **

for each proper subset S of C \ {j,k}:

Ck <- {j,k} union S

Cz <- C \ ({k} union S) ** S proper subset so |Cz| >= 2 **

f[C] <- min{f[C], f[Ck] + f[Cz]}
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e.g. j <- A, k <- B

A B C D E A: B CDE 2 + 6

A 2 3 5 3 BC DE 4 + 5

B 3 3 5 BD CE 5 + 4

C 2 2 BE CD 5 + 5

D 2 BCD E 6 + 3

BCE D 6 + 5

ABC ABD ABE ACD ACE ADE BDE C 7 + 3

4 5 5 5 4 5

BCD BCE BDE CDE

4 5 5 3

ABCD ABCE ABDE ACDE BCDE

6 6 7 6 6
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decomp A B CDE, cost AB + ACDE = 2 + 6 = 8

decomp A BC DE ...

decomp A BD CE ...

decomp A BE CD ...

decomp A BCD E ...

decomp A BCE D ...

decomp A BDE C ...

decomp B ...

decomp C ...

decomp C AB DE, cost ABC + CDE = 4 + 3 = 7

decomp C AD BC, cost ACD + BCE = 5 + 5 = 10

decomp C AE BD, cost ACE + BCD = 4 + 4 = 8

decomp D ...

decomp E ...



A

B

C

D

E

e.g. j <- A, k <- B

A B C D E A: B CDE 2 + 6

A 2 3 5 3 BC DE 4 + 5

B 3 3 5 BD CE 5 + 4

C 2 2 BE CD 5 + 5

D 2 BCD E 6 + 3

BCE D 6 + 5

ABC ABD ABE ACD ACE ADE BDE C 8 + 3

4 5 5 5 4 5

BCD BCE BDE CDE

4 5 5 3

best decomp: C AB DE, cost ABC + CDE = 4 + 3 = 7
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1. if you execute algorithm FDP on this graph, what solution do
you find? explain briefly

2. repeat the question if you change 2nd line to

elif T is 2: return xspan + yspan and

omit line f[C] <- r-caterpillar(C)

3. repeat these two questions for the graph below
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1. 7. This was traced in these slides.

2. 9. With these changes you will return an MST approx solution.

3. 5. Best solution is a full tree.

4. 7. With these changes you will return an MST approx solution.
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