https://en.wikipedia.org/wiki/Perfect_graph
https://en.wikipedia.org/wiki/Strong_perfect_graph_theorem

* for a graph $G=(V, E)$

VxV-E
set of all unordered pairs of nodes of V that are not in E
complement of G

$$
\text { graph } G=(V, V x V-E)
$$

chromatic_number
min number colors needed to color nodes, s.t. adj't nodes get diff't colors
clique_size
size of largest clique

* for any subset S of V,

ELS]
all edges of E with both ends in S
$G[S]=(S, E[S])$ subgraph of G induced by S

* G perfect for every subset S of V,
chromatic number (G[S]) = clique_size(G[S])
* Strong Perfect Graph Theorem: G perfect iff
neither $G, \operatorname{comp}(G)$ has induced odd cycle >= 5 nodes

Recall: a graph node is simplicial if its neighborhood is a clique.

observation

A simplicial node is not in an induced cycle with at least 5 nodes, and not in the complement of such a cycle.

Proof of observation

$N(v)$ denotes the neighborhood of v.

Let v be in an induced odd cycle with at least 5 nodes. The cycle neighbors of v are non-adjacent and in $N(v)$ so v is not simplicial.

Let w be in the complement of an induced odd cycle with n nodes, where $n \geq 5$. If $n=5$ then we are done by the previous argument, because the complement of a 5 -cycle is a 5 -cycle, so $n \geq 7$. Let the nodes of the cycle-complement C be (...u, $v, w, x, y, \ldots)$.

In C all node pairs except for consecutive pairs are adjacent, e.g. v is non-adjacent to u and w and adjacent to x and y. Now x and y are non-adjacent and both in $N(v)$, so v is not simplicial.

1. which graphs on page 1 are perfect? justify each answer. also, for each graph, find its chromatic number ξ and clique size ω. answers on the next page
2. You have two options: use the definition of perfect or use the Strong Perfect Graph Theorem (SPGT). If you use the definition, you will have to look at all non-empty induced subgraphs. There are $2^{n}-1$ such subgraphs in each graphs with n nodes. It's usually less work to use the SPGT.

The first three graphs are $C_{5}(\xi 3, \omega 2), C_{7}(\xi 3, \omega 2)$, and \bar{C}_{7}, $(\xi 4, \omega 3)$, and so none of these are perfect.

The next graph we saw before when we are talking about independent sets. Notice that a is simplicial, so not on an odd induced cycle with at least 5 nodes, nor the complement of such a cycle, so we can remove a from consideration. Similarly, k and q are simplicial so we can remove them. Now p is implicial in $G-a, k, q$, so we can remove p. Now you need to check that the remaining subgraph (induced by all the nodes except
for $a, k, q, p)$ contains no C_{5}, C_{7}, nor \bar{C}_{7} : the graph has only 8 nodes and so has no induced cycle or cycle-complement with 9 or more nodes. This graph is perfect $(\xi 3, \omega 3)$.

The next graph we saw before when talking about TSP. It has a $C_{5}(B, D, E, F, G)$ so is not perfect $(\xi 3, \omega 3)$.

The next graph we saw before when talking about isomorphism.

It has a $C_{5}(c, f, e, p, m)$ so is not perfect.

