based on the text by Bender and Williamson plus some extra stuff
∀ row | permutation of { 1, 2, ..., 9 } |
∀ column | permutation of { 1, 2, ..., 9 } |
∀ 3x3 block | permutation of { 1, 2, ..., 9 } |
sometimes | puzzle makers ensure there is a unique solution |
s(k+1) | |||
= | Σ{j=0}{k+1} j | ||
= | (Σ{j=0}{k} j) + (k+1) | express s(k+1) in terms of s(k) | |
= | s(k) + (k+1) | ||
= | f(k) + (k+1) | ind. hyp. | |
= | k(k+1)/2 + (k+1) | def. f(k) | |
= | (k+1)(k/2 + 1) | rearrange | |
= | (k+1)(k + 2)/2 | rearrange | |
= | f(k+1) | def. f(k+1) | |
QED ... woo hoo ! | |||
def collatz(n): while n > 1: print n, if n % 2 == 0: n = n / 2 else: n = n * 3 + 1 print "1\n"
p q r f(p,q,r) 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0
p | q | ~p | ~q | p∧q | p∨q | p⊕q | p→q | p←q | p↔q | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
0 variable ? f( ) = ...
1-variable ? f(x) = ...
2-variable ? f(x,y) = ...
~~p = p | double negation |
p∧~p = 0 p∨~p = 1 | negation |
p∧0 = 0 p∧1 = p p∨0 = p p∨1 = 1 | bound |
p ◊ (p ∗ q) = p | absorption |
p ◊ p = p | idempotent |
p ◊ q = q ◊ p | commutative |
(p ◊ q) ◊ r = p ◊ (q ◊ r) | associative |
p ◊ (q ∗ r) = (p ◊ q) ∗ (p ◊ r) | distributive |
~(p ◊ q) = ~p ∗ ~q | DeMorgan |
any boolean function can be expressed
proof (sketch)
p q r f(p,q,r) 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0
let | |
a = (~p ∧ ~q ∧ r) | |
b = (~p ∧ q ∧ r) | |
c = (p ∧ q ∧ ~r) | |
then f(p,q,r) | |
= | a ∨ b ∨ c |
= | (~p ∧ ~q ∧ r) ∨ (~p ∧ q ∧ r) ∨ (p ∧ q ∧ ~r) |
f(p,q,r) | |
= | a ∨ b ∨ c |
= | ~~(a ∨ b ∨ c) |
= | ~(~a ∧ ~b ∧ ~c) |
= | ~ ( ~(~p ∧ ~q ∧ r) ∧ ~(~p ∧ q ∧ r) ∧ ~(p ∧ q ∧ ~r) ) |
f(p,q,r) | |
= | a ∨ b ∨ c |
= | ~~a ∨ ~~b ∨ ~~c |
= | ~(~a) ∨ ~(~b) ∨ ~(~c) |
= | ~(p ∨ q ∨ ~r) ∨ ~(p ∨ ~q ∨ ~r) ∨ ~(~p ∨ ~q ∨ r) |
p q r f(p,q,r) 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 1 0
~f(p,q,r) | = | v ∨ w ∨ x ∨ y ∨ z |
where v | = | (~p ∧ ~q ∧ ~r) |
w | = | (~p ∧ q ∧ ~r) |
x | = | (p ∧ ~q ∧ ~r) |
y | = | (p ∧ ~q ∧ r) |
z | = | (p ∧ q ∧ r) so |
~~f(p,q,r) | = | ~(v ∨ w ∨ x ∨ y ∨ z) |
= | ~v ∧ ~w ∧ ~x ∧ ~y ∧ ~z | |
= | (p ∨ q ∨ r) ∧ | |
(p ∨ ~q ∨ r) ∧ | ||
(~p ∨ q ∨ r) ∧ | ||
(~p ∨ q ∨ ~r) ∧ | ||
(~p ∨ ~q ∨ ~r) |
arbitrary d-digit base b number, say
(xd-1 xd-2 ... x2 x1 x0)b =
Σk=0d-1 (bk × xk) =
xd-1 × bd-1 +
xd-2 × bd-2 +
... +
x2 × b2 +
x1 × b1 +
x0 × b0
217 | = | 2 | × | 108 | + | 1 |
108 | = | 2 | × | 54 | + | 0 |
54 | = | 2 | × | 27 | + | 0 |
27 | = | 2 | × | 13 | + | 1 |
13 | = | 2 | × | 6 | + | 1 |
6 | = | 2 | × | 3 | + | 0 |
3 | = | 2 | × | 1 | + | 1 |
1 | = | 2 | × | 0 | + | 1 |
check work with calculator
6253017 = ?10
17 = 1
017 = 1 + 7*(0)
3017 = 1 + 7*(0 + 7*(3) )
53017 = 1 + 7*(0 + 7*(3 + 7*(5) ) )
...
6253017 =
1 + 7*(0 + 7*(3 + 7*(5 + 7*(2 + 7*(6) ) ) ) ) = 10750710
1101011101001100010101002 =
1101 0111 0100 1100 0101 01002 =
D 7 4 C 5 416 =