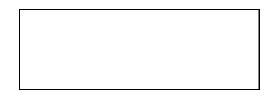
final exam cmput 272 fall 2012 Prof Hayward 6 pages 3 hours 6 marks/page no electronics show all work

Give the base 3 representation of 48207_9 .



Give the base 5 representation of 482.

89				
117				
-117				
89-117				

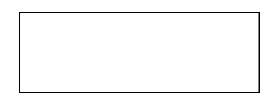
Let a be the statement form $p \land \neg q$. Let b be the statement form $a \lor \neg r$. Let c be the statement form $b \Rightarrow p$. Complete the truth table.

p	q	r	a	b	С
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A *literal* is either a variable or the negation of a variable. An *and*clause is the conjunction of one or more literals. An *or-clause* is the disjunction of one or more literals. A boolean expression is in *disjunctive normal form* if it is the disjunction of one or more andclauses. A boolean expression is in *conjunctive normal form* if it is the conjunction of one or more or-clauses. The statement form f(p, q, r) is given by the truth table.

p	q	r	f
$p \\ 0$	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Express $\neg f$ in disjunctive normal form.



Express f in conjunctive normal form.

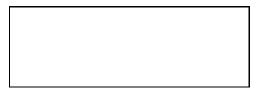
first name

# w is remaining number of white beans									
<pre># b is remaining number of black beans</pre>									
<pre># removeBean() updates w,b correctly</pre>									
<pre># putBlackBean() updates b correctly</pre>									
while $w + b > 1$:									
<pre>bn1 = removeBean()</pre>									
<pre>bn2 = removeBean()</pre>									
if bn1.col != bn2.col:									
<pre>putBlackBean()</pre>									
<pre>putBlackBean()</pre>									

bn1	bn2	change in w	change in b
black	black	0	-2
black	white		
white	black		
white	white		

Complete the above table, which shows the change in w and b after a loop iteration.

Find a variant for this loop. Justify briefly.



Assume to start that w > 0 and w + b = 314159.

Give all possible ordered pairs (w, b) of the final number of white and black beans. Justify briefly.

	-	

A binary relation on a set S is *inclusive* if every element in S relates to at least one element. For example, $\{(1,2), (2,3)\}$ is not inclusive, because 3 does not relate to any element. I(n) is the number of inclusive relations on an *n*-set. Find I(n) for n = 1, 2, 3 and for arbitrary *n*.

	n	1	2		3	arbitrary
	I(n)					
For these preferences $1,2,3,4,5$ ar find the stable matching by Show this matching by	nd univ ng tha	ersities {a,b,c,d t is best for un	,e}, iversities. box.	2: c 3: d 4: b	b c d e e d b a c b a e a c d e a d b c	a: 1 2 3 4 5 b: 3 1 5 2 4 c: 4 3 2 1 5 d: 2 1 5 4 3 e: 3 1 2 5 4

1	2	3	4	5
a	b	С	d	е

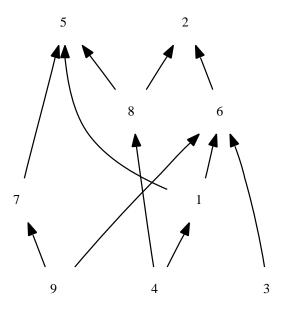
Let $n \geq 3$ be the number of students and the number of universities, let no two students have the same preference sequence, and let no two universities have the same preference sequence. Prove/disprove: the stable matching that is best for students is different from the stable matching that is best for universities.

Recall that S(n, k) is the number of k-partitions of an n-set. Recall that S(n, 1) = S(n, n) = 1 for $n \ge 1$. Recall that S(n, k) = S(n - 1, k - 1) + kS(n - 1, k) for n > k > 1. Use this information to prove by induction: for all integers $n \ge 2$, S(n, n - 1) = n(n - 1)/2.

The proof in the base case:

The inductive hypothesis in the inductive case:

The rest of the proof:



For the poset with this Hasse diagram, give a 4-chain and a partition of the poset into 4 antichains.

Give a 4-antichain and a partition of the poset into 4 chains.

Prove/disprove: there is a partition of the poset into 3 chains.