cmput 272 fall 2011 final exam

8 pages 3 hours 37 marks

no electronic devices write answers in the space provided show all work

1. [4 marks]

represent 219 in binary

represent 8701_9 in base 3

represent 1011101010_2 in hexa decimal

represent 101101_2 in decimal

represent -219 in 10-bit two's complement

represent 10-bit two's complement 1111011010 in decimal

2. [4 marks] complete the truth table for the boolean function $f = (p \to \sim r) \to ((q \lor r) \to p)$

р	q	r	f
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

represent $x\oplus y$ using symbols from $\{\wedge,\sim,(,),x,y\}$

3. [4 marks] let $g = \gcd(29,17)$ use Euclid's algorithm to find g

find integers x, y such that 29x + 17y = g

find the smallest nonnegative integer t such that $29t=g \mbox{ mod } 17$

4. [5 marks] Recall: \mathcal{Z}^+ is the set of positive integers, and a|b (a divides b) if there is an integer k such that $a \cdot k = b$.

Let x, y be positive integers, let $D = \{d \in \mathbb{Z}^+, d | x \wedge d | y\}$, let $M = \{m \in \mathbb{Z}^+, \exists s, t \in \mathbb{Z}, m = s \cdot x + t \cdot y\}$. Prove or disprove: $\forall d \in D, \forall m \in M, \exists t \in \mathbb{Z}^+, m = d \cdot t$.

Let x = 1321181, y = 1291929. Notice: $x = 103 \cdot 12543$, $y = 103 \cdot 12827$, $103 = 6278 \cdot y - 6139 * x$. Prove or disprove: 103 is the smallest positive linear combination of x, y. 5. [4 marks] Let p be the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 10 & 12 & 8 & 9 & 3 & 6 & 1 & 11 & 7 & 4 & 5 & 2 \end{pmatrix}$. give p in cyclic form

give p^{99} in cyclic form

give the smallest integer t such that $p^t = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \end{pmatrix}$

```
6. [5 marks]
```

```
while tin has >= 2 beans
bn1 := removeBean() bn2 := removeBean()
if (bn1 and bn2 are both white) then
    putBlack() putBlack()
elsif (bn1 and bn2 are both black)
    putBlack()
else
    putWhite()
endif
#### comment: bn1 and bn2 are thrown away
endwhile
```

Let w_t, b_t be the number of white, black beans in the tin after the loop body executes exactly t times. So, the code starts with $w_0 \ge 0$ white beans and $b_0 \ge 0$ black beans. Justify each answer briefly.

Does the code always terminate? If yes, give a variant that holds on entering the loop body. If no, explain.

Assume that $w_0 = 21$, $b_0 = 15$, and the code terminates after the loop body executes exactly k times. Give w_k , b_k , and possible values for k.

7. [4 marks] S(n,k) is the number of k-partitions of an n-set. List all 2-partitions of the 4-set $\{a, b, c, d\}$.

For all $n \ge 2$, S(n, 2) = S(n - 1, 1) + 2S(n - 1, 2); explain briefly why this is true. (In your answer, do **not** use the general recursive formula for S(n,k)).

8. [7 marks] prove by induction: for any real number a, for all integers $n \ge 0$,

$$\sum_{j=0}^{n} (a+j) = \frac{(2a+n)(n+1)}{2}$$

base case

inductive case

END OF EXAM

