
CMPUT 204 — Problem Set 5

(Partial solutions provided by Theo)

Topics covered in Part I are biconnected component
and minimum spanning tree; in Part II are Dijkstra’s
algorithm for single-source shortest paths, Strassen’s
matrix multiplication algorithm, P & NP concepts,
decision problem, and polynomial time verification.

It is highly recommended that you read pages 580–
587, 595–601, 735–741, and 966–983 very care-
fully and do all the exercises. The following are some
of them that you are REQUIRED to practice on.

Quiz questions are mostly based on this list, with
some minor modifications necessary. Consult your
instructor and TAs if you have any problem with this
list.

Announcement: Quiz 5-1 will be on DFS
and finding biconnected components.

Part I

1. P558, Prob 22-2.

Hint:

This problem is covered by the

lectures on how to compute biconnected

components via DFS tree. Please check

back to the lecture slides. As an

example, let us prove a.

Proof done using the DFS tree property:

there are no cross edges.

If the root of the DFS tree has degree

greater than 1 (means having at least

two children), then by removing root

and its incident edges, there is no

path connecting two vertices inside

the subtrees rooted at the distinct

children of root. This means the

removal disconnects the graph.

If the root has degree exactly 1, then

removing it and the incident edges

wouldn’t disconnect the graph and thus

the root is not an articulation vertex.

2. P566, Ex 23.1-1.

Hint:

Proof similar to the proof of Theorem

23.1.

3. P566, Ex 23.1-5.

Hint:

Proof similar to the proof of Theorem

23.1.

4. Change the weights on the graph on page 568
by replacing each weight t with (15 − t). Trace
Kruskal’s algorithm on the resulting graph.

5. Trace Prim’s algorithm on the graph on page
571, starting with vertex d.

6. P573, Ex 23.2-2.

Hint:

See lecture slides where the pseudocode

is provided for adjacency lists

representation.

7. P573, Ex 23.2-3.

Please ignore this question.

8. P573, Ex 23.2-4.

Hint:

Assuming adjacency lists

representation:

When all edges have weight in the range

from 1 to |V |, the running time for

sorting the edges into non-decreasing

order dominates the overall running

time. Therefore, the overall running

time is Θ(|E| log |V |).
When all edges have weight in the

range from 1 to a constant W, the

running time for sorting the edges

into non-decreasing order is Θ(|E|).
Therefore the dominant term in the

overall running time is the Disjoint

1

Sets implementation. Using operations

rUnion and cFind, the overall running

time is Θ(|E|α(|V |)).

9. P573, Ex 23.2-5.

Hint:

Since the dominant term in the overall

running time is the heap (priority

queue) implementation, the overall

running times are both Θ(|E| log |V |).

10. P573, Ex 23.2-8.

Hint:

The algorithm is not correct. You need

to provide an example by yourself.

11. P578, Prob 23-4.

Hint:

(a) Yes.

Proof can be done similarly to

the proof of correctness of Prim’s

algorithm provided in the lecture

slides.

Can be implemented to run in

Θ(|E|2) time since checking the

connectivity takes Θ(|E|) time and

you might need to remove as many as

Θ(|E|) edges.

(b) No.

(c) Yes.

You need to figure out the

implementation details by yourself.

2

