
CMPUT 204 — Problem Set 4

(Partial solutions provided by Guang)

Topics covered in Part I are dynamic programming
and its applications matrix-chain multiplication and
longest common subsequence; in Part II are disjoint-
set and its operations, graphs, BFS and DFS.

It is highly recommended that you read pages 323–
324, 331–356, 498–509, and 527–549 very care-
fully and do all the exercises. The following are some
of them that you are REQUIRED to practice on.

Quiz questions are mostly based on this list, with
some minor modifications necessary. Consult your
instructor and TAs if you have any problem with this
list.

Part II

1. P501, Ex 21.1-1.

2. P501, Ex 21.1-3.

Hint:

Two FIND-SET called for every edge, and

thus in total 2|E| calls.

UNION is called when the two vertices

in an edge are in different components,

and it reduces the number of components

by exactly 1. Right at the beginning

there are |V | components and the the end

there are k components. Therefore, in

total |V | − k calls.

3. P509, Ex 21.3-1.

Repeat this question without path compression.

Hint:

By rUnion and Find, the final forest

is:

�
�
�x

1

�
�
�x2 C
C
C x
3

�
�

�x4

�
�
�x

5

x6S
S

S x
7

!!!!!!!!

x8

�
�
�x

9

�
�
�x10 C
C
C x
11

�
�
�x12

x16

�
�
�x

13

A
A

A x14Q
Q

Q
QQ x

15

By rUnion and cFind, the final forest

is:

x
2

x4

�
�
�x

3

x8

�
�

�x
1

�
�
�x

5

x
6

A
A

A x
7

x
9

x
10

x12
A

A
A x
11

x
13

x
14

x
15

������������

���������

�
�

�
��

�
�
�

A
A

A

Q
Q

Q
QQ

HH
HHHH

aaaaaaaax16

4. P518, Ex 21.4-2.

Hint:

First, show that in any subtree rooted

at x, the rank of x is the height of

the subtree.

Second, show that the height of the

subtree is at most lg m, where m is the

number of vertices inside the subtree.

Both of them can be proved by

induction. For details, see course

lecture slides.

5. P530, Ex 22.1-1.

Hint:

For digraphs, the adjacency list for

vertex u records the vertices v such

that there is a directed edge from u to

v.

1

Therefore, for every vertex, its

out-degree can be computed in O(|V |)
time (since the size of a list is at

most |V |).
To compute the in-degree of v, we need

to examine those vertices u such that

(u, v) is an edge. Thus, we need to

examine all other vertices and their

lists, which takes Θ(|E|) time.

6. P530, Ex 22.1-2.

7. P530, Ex 22.1-3.

Hint:

For adjacency matrix representation

(you can figure out the case for

adjacency lists representation

yourself):

Examine entry (i, j), where i ≤ j: if

its value is 1 and entry (j, i) also has

value 1, then their values are not

changed; if its value is 1 and entry

(j, i) has value 0, then entry (i, j) has a

new value 0 while (j, i) has a new value

1; if its value is 0 and entry (j, i)
has value 1, then entry (i, j) has a new

value 1 while (j, i) has a new value 0;
if its value is 0 and entry (j, i) also

has value 0, then their values are not

changed.

This takes Θ(|V |2) time.

8. P530, Ex 22.1-5.

Hint:

For adjacency matrix representation:

To determine if (i, j) can have value 1,
examine if there is an index k such

that both (i, k) and (k, j) have value 1,
which takes O(|V |) time.

Therefore, the overall algorithm will

take O(|V |3) time.

9. P530, Ex 22.1-6.

Hint:

With the adjacency matrix

representation, the idea is to avoid

the examination of most of the entries

by deduction:

For every pair of vertices i and j, if

entry (i, j) has value 1, then vertex i

is not a universal sink; if entry (i, j)
has value 0, then vertex j is not a

universal sink. Therefore, start from

vertex i = 1 to find a vertex j, if any,

such that entry (i, j) has value 1. If

there is no such j, then vertex i is the

only candidate and thus by examining

the i-th row and the i-th column we are

done. Otherwise, let j be the smallest

index vertex (examine the i-th row from

left to right) such that (i, j) has value

1. This means vertex k : 1 ≤ k < j

is not a universal sink. Then we can

continue the examining at the j-th row,

from (j + 1)-th column on.

This examines in total at most 3|V |
entries in the adjacency matrix.

10. P539, Ex 22.2-1.

11. P539, Ex 22.2-2.

12. P539, Ex 22.2-3.

Hint:

Θ(|V |2).

13. P539, Ex 22.2-6.

Hint:

Treat every wrestler as a vertex and if

two of them have a rivalry then there

is an edge connecting them. Use the

adjacency lists to represent the graph

constructed.

Doing a BFS on this graph and obtain

the BFS tree.

Assign the wrestlers at the odd levels

to be good and those at the even levels

to be bad. If there is a cross edge

connecting two good guys (or two bad

guys), then report that there is no

possibility of designation; otherwise

this is a designation of good and bad.

14. P547, Ex 22.3-2.

15. P549, Ex 22.3-10.

Hint:

For instance, let v1, v2, . . . , vk be the

vertices such that (vi, u) is an edge;

2

let w1, w2, . . . , w` be the vertices such

that (u, wj) is an edge. It could be the

case that at some time during the DFS,

all the wj but none of vi nor u have

been discovered; and the DFS proceeds

to discover u. In this case, a tree

has to be created with its root vertex

u, while the tree cannot grow since all

wj have been discovered. That is, the

tree contains only u.

16. P549, Ex 22.3-11.

Hint:

Check the pseudocode for DFS.

3

