
CMPUT 204 — Problem Set 3

(Partial solutions provided by Lisheng)

Topics covered in Part I are heapsort and priority
queues; in Part II are quicksort and lower bounds for
comparison based sorting.

It is highly recommended that you read pages 135–
168 very carefully and do all the exercises. The fol-
lowing are some of them that you are REQUIRED
to practice on.

Quiz questions are mostly based on this list, with
some minor modifications necessary. Consult your
instructor and TAs if you have any problem with this
list.

Part I

1. P136, Ex 6.4-1.

2. P136, Ex 6.4-2.

Hints:

Proof of correctness via Loop Invariant(s) in-
volves 3 phases: Initialization, Maintenance,
and Termination.

Proof of a Loop Invariant does not require you
to “show the correctness of algorithm when the
LI terminates”, but you need to argue that the
LI does terminate.

3. P136, Ex 6.4-3.

Hints:

Recall the BC running time analysis for “all
keys are distinct”. You can apply the sandwich
property to claim that the running time is in
Θ(n log n) for both cases.

4. P140, Ex 6.5-1.

5. P140, Ex 6.5-2.

6. P142, Ex 6.5-5.

7. P142, Ex 6.5-6.

Hints:

First-in-first-out queue: use a min-priority
queue.

• use a counter k to denote the number of
elements in the queue, initialized to 0

• use another counter ` to denote the num-
ber of elements removed from the queue,
initialized to 0

• whenever a new element comes in, assign
it priority k and add it to the queue;

k ← k + 1

running time Θ(1), since the newly added
element has the maximum priority and
thus stay at the last position

• whenever an element is removed from the
queue, `← ` + 1

WC running time Θ(log(k − `)), since one
min-heapify required

• at the time k is increased and becomes
larger than 2`, perform the following
“cleanup”:

reduce the priority for each element in the
queue from x to x− `

running time Θ(k − `)

k ← k − `

`← 0

• the last “cleanup” step is necessary in the
actual implementation, for otherwise the
priority of a new element would keep in-
creasing and would ultimately “overflow”

Last-in-first-out queue: use a max-priority
queue.

• use a counter k to denote the number of
elements in the queue, initialized to 0

notice that (k−1) is the maximum priority
in the queue

• whenever a new element comes in, assign
it priority k and add it to the queue;

k ← k + 1

1



WC running time Θ(log k), since the newly
added element has the maximum priority
and thus has to be pop up the root

• whenever an element is removed from the
queue, k ← k − 1
running time Θ(log(k−`)), since one max-
heapify required

8. P142, Ex 6.5-8.

Hints:

Use a k-element min-heap.

• the elements in the min-heap are the k

sorted lists

• every element has the key value equal to
the first number in the list

• make them into a min-heap takes Θ(k)
time

• put the first number from the list at the
root node into the first position of the
sorted array
update the root element to have a key
value equal to the second number in the
list
min-heapify it
WC running time is dominated by the min-
heapify, and so Θ(log k)

• repeat the above process until every list
becomes empty
overall running time is: adding one key to
the sorted array takes Θ(log k) time and
there are in total n keys
Therefore, Θ(n log k) in total.
Note: building heap is minor

2


