Lecture 31

today

e NP completeness

announcements

e final exam

UAlberta CS204 © R. Hayward

: Wednesday April 2, 2003

L31: Wed 2/04/2003

page 1



NP-Completeness [CLRS Ch 34|

e PTA: polynomial time algorithm
e so far, all algorithms we have seen are PTAs

e but ... for many problems

— no known PTA
— best known alg’'m exponential time

— can sometimes show hardness results (namely, if PTA is found, it
implies PTA for huge class of problems)

UAlberta CS204 © R. Hayward L31: Wed 2/04/2003 page 2



basic concepts
e (abstract) problem
e decision problem
e the classes P, NP, co-NP
e the satifiability problem (SAT)
e completeness: the class NP-c
e Cook’s theorem: SAT € NP-c
e Karp’s consequences: these 21 problems € NP-c

— 3-CNF-SAT
— graph 3-colouring

— graph Hamiltonian

e today: know thousands of problems € NP-c

e how to show a problem € NP-c

UAlberta CS204 (© R. Hayward L31: Wed 2/04/2003 page 3



(abstract) problem

e two parts
— a set of problem instances the inputs
— a query the question
e instance solution: query answer for that instance the output

e example of a problem: single-source shortest path problem

— instance: all (G, s), with G a weighted graph and s a starting
vertex

— query: for the input weighted graph G and starting vertex s, for
each vertex v, what is the length of a shortest s — v path?

e decision problem: each solution is yes/no
e example of a decision problem: Hamiltonian graph problem

— instances: all graphs

— query: does the input graph G have a Hamiltonian cycle?

UAlberta CS204 © R. Hayward L31: Wed 2/04/2003 page 4



the class of problems P
e decision problem
e some alg’m solves problem in time poly’l in size of the problem
e problem size?

— assume each instance represented as binary string
— e.g. graph: string formed from adjacency matrix

— size of instance is length of binary string

e Hamiltonian graph problem not known to be in P

UAlberta CS204 (© R. Hayward L31: Wed 2/04/2003 page 5



the class of problems NP
e should be called PYV (polynomially yes-verifiable)
e decision problem

e for every instance with answer yes, there is a proof that the answer is
yes which can be verified in polynomial time

e example: Hamiltonian graph problem is in NP

— if G is Hamiltonian, it has a Ham™n cycle (vy, ..., v,)
— it doesn’t matter how long it takes to find the cycle
— what matters: if you show the cycle to someone else ...

— in O(n?) time, they can verify that it is a Ham’n cycle

e is the problem ‘given a graph, is it not Hamiltonian?’ in NP?

UAlberta CS204 (©) R. Hayward L31: Wed 2/04/2003 page 6



the class of problems co-NP
e should be called PNV (polynomially no-verifiable)
e decision problem

e for every instance with answer no there is a proof that the answer is
no which can be verified in polynomial time

e example: “is this number prime?” is in co-NP

— if instance (number ) is not prime, then = ab for some a, b > 2,
— it doesn’t matter how long it takes to find a, b
— what matters: if you show a, b, x to someone else ...

— in polynomial time, they can check that a X b =«

UAlberta CS204 (© R. Hayward L31: Wed 2/04/2003 page 7



P is in NP and co-NP
e if a problem is in P, it can be solved in polynomial time
e the solving algorithm can be used to verify any yes answer
e so the problem is in NP
e the solving algorithm can be used to verify any no answer

e so the problem is in co-NP

UAlberta CS204 (© R. Hayward L31: Wed 2/04/2003 page 8



some well-known problems in NP
e k-clique: given a graph, does it have a k-clique?
e k-independent set: given a graph, does it have a k-ind. set?

e k-colouring: given a graph, can the vertices be coloured with & colours
(so that adjacent vertices get different colours)?

e satisfiability (SAT): given a boolean expresssion, is there an assign-
ment of truth values (T/F) to variables, so that the expression is
satisfied (evaluates to T)?

UAlberta CS204 (©) R. Hayward L31: Wed 2/04/2003 page 9



polynomial time reduction

e a decision problem I1; is polynomially reducible to a decision problem
[, if there is a polynomial time transformation function ¢ which maps
instances of II; to instances of Il s.t. s.t. for all instances = of Iy,
the answer to x is the same as the answer to ¢(z)

e c.g. k-independent set is reducible to k-clique
proof: X independent set in G iff X clique in G

e e.g. 3-sat is reducible to sat trivial exercise

e e.g. sat is reducible to 3-sat non-trivial exercise

UAlberta CS204 (© R. Hayward L31: Wed 2/04/2003 page 10



