Lecture 31: Wednesday April 2, 2003

today

• NP completeness

announcements

• final exam

NP-Completeness

[CLRS Ch 34]

- PTA: polynomial time algorithm
- so far, all algorithms we have seen are PTAs
- but ... for many problems
 - no known PTA
 - best known alg'm exponential time
 - can sometimes show hardness results (namely, if PTA is found, it implies PTA for huge class of problems)

basic concepts

- (abstract) problem
- decision problem
- the classes P, NP, co-NP
- the satisfiability problem (SAT)
- completeness: the class NP-c
- Cook's theorem: SAT \in NP-c
- Karp's consequences: these 21 problems \in NP-c
 - 3-CNF-SAT
 - graph 3-colouring
 - graph Hamiltonian
 - **—** . . .
- \bullet today: know thousands of problems \in NP-c
- how to show a problem \in NP-c

(abstract) problem

- two parts
 - a set of problem instances

the inputs

- a query

the question

- instance solution: query answer for that instance the output
- example of a problem: single-source shortest path problem
 - instance: all (G, s), with G a weighted graph and s a starting vertex
 - query: for the input weighted graph G and starting vertex s, for each vertex v, what is the length of a shortest s-v path?

- decision problem: each solution is yes/no
- example of a decision problem: Hamiltonian graph problem
 - instances: all graphs
 - query: does the input graph G have a Hamiltonian cycle?

the class of problems P

- decision problem
- some alg'm solves problem in time poly'l in size of the problem
- problem size?
 - assume each instance represented as binary string
 - e.g. graph: string formed from adjacency matrix
 - size of instance is length of binary string
- ullet Hamiltonian graph problem not known to be in P

the class of problems NP

- should be called PYV (polynomially yes-verifiable)
- decision problem
- for every instance with answer yes, there is a proof that the answer is yes which can be verified in polynomial time
- example: Hamiltonian graph problem is in NP
 - if G is Hamiltonian, it has a Ham'n cycle (v_1, \ldots, v_n)
 - it doesn't matter how long it takes to find the cycle
 - what matters: if you show the cycle to someone else ...
 - in $O(n^2)$ time, they can verify that it is a Ham'n cycle
- is the problem 'given a graph, is it not Hamiltonian?' in NP?

the class of problems co-NP

- should be called PNV (polynomially no-verifiable)
- decision problem
- for every instance with answer no there is a proof that the answer is no which can be verified in polynomial time
- example: "is this number prime?" is in co-NP
 - if instance (number x) is not prime, then x = ab for some $a, b \ge 2$,

- it doesn't matter how long it takes to find a, b
- what matters: if you show a, b, x to someone else . . .
- in polynomial time, they can check that $a \times b = x$

P is in NP and co-NP

- if a problem is in P, it can be solved in polynomial time
- the solving algorithm can be used to verify any yes answer
- so the problem is in NP
- the solving algorithm can be used to verify any no answer
- so the problem is in co-NP

some well-known problems in NP

- k-clique: given a graph, does it have a k-clique?
- k-independent set: given a graph, does it have a k-ind. set?
- k-colouring: given a graph, can the vertices be coloured with k colours (so that adjacent vertices get different colours)?
- satisfiability (SAT): given a boolean expression, is there an assignment of truth values (T/F) to variables, so that the expression is satisfied (evaluates to T)?

polynomial time reduction

- a decision problem Π_1 is *polynomially reducible* to a decision problem Π_2 if there is a polynomial time transformation function t which maps instances of Π_1 to instances of Π_2 s.t. s.t. for all instances x of Π_1 , the answer to x is the same as the answer to t(x)
- e.g. k-independent set is reducible to k-clique proof: X independent set in G iff X clique in \overline{G}
- e.g. 3-sat is reducible to sat

trivial exercise

• e.g. sat is reducible to 3-sat

non-trivial exercise