Lecture 29: Wednesday March 26, 2003

today

• single source shortest path: Dijkstra

announcements

shortest path problem variants

- single source? or all pairs?
- graph: directed? (or undirected)
- edges: weighted? (or unweighted)
- weights: non-negative? (or may have negative weights)
- directed: acyclic? (or may have di-cycles)

undirected unweighted single-source

- distance(x,y): min'm number of edges in x-y path ∞ if none
- have seen: solved by BFS

directed, non-negative weighted, single-source

• distance(x,y): min'm sum of edge weights in x-y path ∞ if none

L29: Wed 26/03/2003

• solved by Dijkstra's algorithm (next)

Dijkstra's SSSP algorithm

[CLRS 24.3]

- greedy, similar to Prim/Dijkstra/Boruvka MST algorithm
- also works for undirected graphs
- also works for unweighted (make all weights 1)

Dijkstra SSSP

```
Relax(u,v,w) { shorter to v via (u,v)? { [CLRS p 586]
1 if d[v] > d[u] + w(u,v) then
    d[v] \leftarrow d[u] + w(u,v)
3 parent[v] <- u</pre>
InitSS(G,s)
                               { [CLRS p 585]
1 for each vertex v in V[G] do
2 d[v] <- infinity { shortest (s,v) distance so far
3 parent[v] <- NIL { allows path construction</pre>
4 d[s] < 0
                     { s is source
Dijkstra(G,w,s) { digraph, weights non-neg. [CLRS p595]
1 InitSS(G,s)
2 S <- empty { vertices with d[v] final
3 Q <- V[G] { min priority queue
4 while not isEmpty(Q) do
5 u <- ExtractMin(Q)</pre>
6 add u to S
7 for each vertex v in Adj[u] do
     Relax(u,v,w)
8
```

weights 1 2 3 4 5 6 7 1:

04

11 31 2:

3: 05

1 03 4: 3 6 5: 14 42 2 5

6: 03 05 13

7:

v d[v] p[v] in S? ****** *trace 1

7

SSSP(4) 2

3 *****

> 4 0 yes *

5

6

7

14

07

correctness of Dijkstra SSSP

• claim: at termination, d[v] is dist(s,v) for each v in V

• loop invariant: at start of Line 4, d[v] is dist(s,v) for each v in S

proof of loop invariant

• init'n: S empty, so invariant holds vaccuously

• next step $S = \{s\}$, and d[s]=0=dist(s,s), so invariant holds

• maintenance?

• term'n: S=V, so invariant implies claim

proof of loop invariant: maintenance

- only change to S in loop: add u
- so must show: at loop body end, d[u] is dist(s,u)

showing d[u] is dist(s,u)

- consider any shortest s-u path $P = (s = v_0, v_1, \dots, v_k = u)$
- $y = v_j$: first vertex in P not in S possibly y = u
- $x = v_{j-1}$ possibly x = s
- d[y] = dist(s,y) when u added to S why?
 - any subpath of a shortest path is a shortest path
 - so (s, \ldots, x, y) is a shortest path
 - -x is in S
 - so (x, y) was relaxed when d[x] = dist(s, x)
 - -d[v] never increases, so d[x] = dist(s, x) still
 - $\text{ so } d[y] \le length(s, \dots, y) = dist(s, y)$
- y precedes (or equals) u in shortest s, u path
- so $dist(s,y) \le dist(s,u)$
- y and u both in V-S when u chosen, so $d[u] \leq d[y]$
- ... but also $d[y] = dist(s, y) \le dist(s, u) \le d[u]$
- so d[y] = dist(s, y) = dist(s, u) = d[u]

Dijkstra SSSP run time

- same as PDB MST
- WC $\Theta(n^2)$
- WC $\Theta(m \lg n)$

with priority queue: list imp'n

with priority queue: heap imp'n