Lecture 17: Wednesday February 12, 2003

today

• decision tree sorting lower bound [CLRS Ch. 8.1]

soon

- dynamic programming (start today) [CLRS Ch. 15.1-3]
- union find [CLRS Ch. 21]
- graph algorithms [CLRS Ch. 22,23]

L17: Wed 12/02/2003

a sorting lower bound [CLRS Ch. 8.1]

two useful trees in algorithm analysis

• recursion tree

- node \leftrightarrow recursion call
- describes algorithm execution for one particular input,
 by showing all calls made
- one algorithm execution \leftrightarrow all nodes
- useful in analysis: sum number of operations over all nodes

• decision tree

- node \leftrightarrow algorithm decision
- describes algorithm execution for all possible inputs,
 by showing all possible algorithm decisions
- one algorithm execution \leftrightarrow one root-to-leaf path
- useful in analysis: sum number of operations over one path

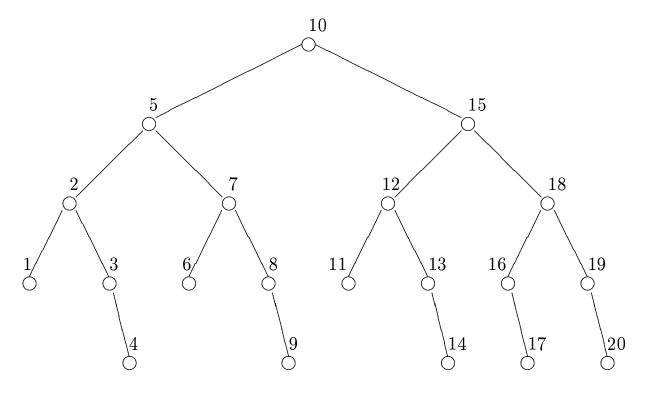
L17: Wed 12/02/2003

binary search decision tree, n = 20

• assume input keys in array $A[1 \dots 20]$

• tree node: \leftrightarrow '3-way' key comparision <? =? >?

• node label: A[j]



• WC number KC: 5

in general, $1 + \lfloor \lg n \rfloor$

• AC number KC?

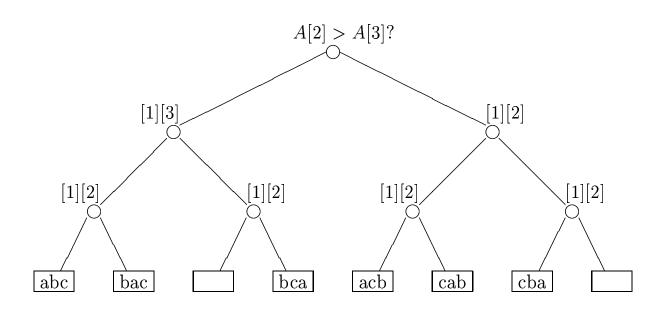
ask: input distribution?

- target in list, each location equiprobable $(2^0 \cdot 1 + 2^1 \cdot 2 + 2^2 \cdot 3 + 2^3 \cdot 4 + 5 \cdot 5)/20 = 3.7$
- target not in list, each 'gap' equiprobable $(11 \cdot 4 + 10 \cdot 5)/21 \approx 4.5$
- both dist'ns: $AC(n = 2^k 1) \approx \lfloor \lg n \rfloor + 1/2$

selection sort decision tree, n = 3

- assume input keys in array A[1 ... 3], initially [a b c]
- tree node: A[k]>A[j]? key comparision
- node label: A[j]

for j <- n downto 2 do
psn <- j (*index of max*)
for k <- j-1 downto 1 do
 if A[k] > A[psn] then psn <- k
exchange A[j] <-> [psn]



• notice: every case, 3 KC

sorting lower bound

- comparison based sort: keys can be compared **only**
- this argument considers **only** comparison based sort algorithms
- \bullet any binary tree with t leaves and k levels:

$$-t \le 2^{k-1}$$

$$-\lg t \le k-1$$

$$-1 + \lg t \le k$$
, namely binary tree with t leaves has $\ge 1 + \lg t$ levels

- the decision tree of any comparison based sort ...
 - binary
 - has n! leaves

$$-\dots$$
 so has at least $1 + \lg(n!) = 1 + \sum_{j=1}^{n} \lg j \in \Theta(n \lg n)$ levels

- conclusion: any comparison based sort has
 - worst case number of key comparisons in $\Omega(n \lg n)$
 - worst case run time in $\Omega(n \lg n)$ \bigcirc
- comparison based: selectsort, insertsort, heapsort, quicksort
- **not** comparison based: radix sort, bucket sort
- see Ch. 8 for extra reading

end of material for Section B1 Midterm

dynamic programming

- an algorithm design technique
- DP: avoiding recomputation of repeated subproblems by storing subproblem answers in tables/arrays

1st example problem: Fibonacci numbers

•
$$f(n) = \begin{cases} n & \text{if } n = 0, 1 \\ f(n-1) + f(n-2) & \text{if } n \ge 2 \end{cases}$$

• 1st Fibonacci implementation: recursion

- (:) repeated function calls
- time $T(n) = \begin{cases} c_1 & \text{if } n = 0, 1 \\ c_2 + T(n-1) + T(n-2) & \text{if } n \ge 2 \end{cases}$

•
$$T(n) > f(n)$$
 so $T(n) \in \Omega(\left(\frac{1+\sqrt{5}}{2}\right)^n)$