Lecture 17: Wednesday February 12, 2003

today

e decision tree sorting lower bound [CLRS Ch. 8.1]

SOo0on

e dynamic programming (start today) [CLRS Ch. 15.1-3]
e union find [CLRS Ch. 21]
e graph algorithms [CLRS Ch. 22,23]

UAlberta CS204 © R. Hayward L17: Wed 12/02/2003 page 1

a sorting lower bound [CLRS Ch. 8.1]

two useful trees in algorithm analysis

e recursion tree

— node < recursion call

— describes algorithm execution for one particular input,

by showing all calls made
— one algorithm execution < all nodes

— useful in analysis: sum number of operations over all nodes

e decision tree

— node <+ algorithm decision

— describes algorithm execution for all possible inputs,

by showing all possible algorithm decisions
— one algorithm execution <> one root-to-leaf path

— useful in analysis: sum number of operations over one path

UAlberta CS204 © R. Hayward L17: Wed 12/02/2003 page 2

binary search decision tree, n = 20
e assume input keys in array A[l ...20]
e tree node: <+ ‘3-way’ key comparision <7 =7 >7

e node label: Alj]

10
5) 15
@, @)
2 / \ 7 12/ \ 18
@) Q O Q
3 6 8 11 13 16 19
4 9 14 17 20
e WC number KC: 5 in general, 1+ |lgn]
e AC number KC? ask: input distribution?

— target in list, each location equiprobable
2°-1 4+ 2.2 +22.3 + 234 4+ 5-5)/20 = 3.7
— target not in list, each ‘gap’ equiprobable
(11-44+10-5)/21 =~ 4.5
— both dist'ns: AC(n =2 — 1) =~ |lgn] +1/2

UAlberta CS204 (© R. Hayward L17: Wed 12/02/2003 page 3

selection sort decision tree, n =3

e assume input keys in array A[l ... 3], initially [a b c]
e tree node: A[k]1>A[j]1? key comparision

e node label: Alj]

for j <- n downto 2 do
psn <- j (*index of max*)
for k <- j-1 downto 1 do
if A[k] > Al[psn] then psn <- k
exchange A[j] <-> [psn]

Al2] > A[3]?
[1][3] [1][2]
O O
[1}[2]/ \[1][2] [1] [2]/ \[1][2]
O ///D CK\\ //;l\\
| abc | | bac | | | | bea | | ach | | cab | | cba | | |

e notice: every case, 3 KC

UAlberta CS204 © R. Hayward L17: Wed 12/02/2003 page 4

sorting lower bound
e comparison based sort: keys can be compared only
e this argument considers only comparison based sort algorithms
e any binary tree with ¢ leaves and £ levels:
_ ¢ < okl
—lgt < k-1

— 1+ 1gt <k, namely
binary tree with ¢ leaves has > 1 4 1gt levels

e the decision tree of any comparison based sort ...

— binary
— has n! leaves

— ...80 has at least 1 +1g(n!) =1+ i lgj € O(nlgn) levels
j=1

e conclusion: any comparison based sort has

— worst case number of key comparisons in Q(nlgn)
— worst case run time in Q(nlgn) @

e comparison based: selectsort, insertsort, heapsort, quicksort
e not comparison based: radix sort, bucket sort

e see Ch. 8 for extra reading

end of material for Section B1 Midterm

UAlberta CS204 (© R. Hayward L17: Wed 12/02/2003 page 5

dynamic programming
e an algorithm design technique

e DP: avoiding recomputation of repeated subproblems by storing sub-
problem answers in tables/arrays

1st example problem: Fibonacci numbers

n it n=0,1
* fln) = {f(n—1)+f(n—2) if n>9

UAlberta CS204 (© R. Hayward L17: Wed 12/02/2003 page 6

e 1st Fibonacci implementation: recursion

proc f(n) -- f5 --
if n<2 then return n / \
else return f(n-1)+f(n-2) endif f4 £3
endf /\ /\
£3 f2 f2 f1
/’\ /\ /\
f2 £f1 f1 f0 £1 £0
/ \
f1 £f0

° <::) repeated function calls

¢ if n=0,1

e time T(n) = {62+T(n—1)—|—T(n—2) if n>2

e T'(n) > f(n) so T(n) € Q((#)n) @

UAlberta CS204 (© R. Hayward L17: Wed 12/02/2003 page 7

