Lecture 12: Friday January 31, 2003

today and next class: heapsort analysis

e will show these run time results:

— time in O(nlogn) proof is easy @
— WC O(nlogn) @
— BC

* all keys equal: ©(n) @

* all keys distinct: ©(nlogn)

UAlberta CS204 © R. Hayward L12: Fri 31/01/2003 page 1

heap shaped tree: positions depth

1 0
/ \
2 3 1
/ 0\ / \
4 5 6 7 2
/N /N
8 9 10 11 12 3

UAlberta CS204 © R. Hayward L12: Fri 31/01/2003 page 2

some heap shaped binary tree facts

e def’'n: depth of a node number of links in path to root
e def’'n: depth of tree max'm depth of node, say d
e depth of node at position 57 g j]
why? positions on path to root: j |j/2] |j/4] ... 1
e 50 ...sum of depths of all nodes? > |lgj] € O(nlgn)
j=1

e number of nodes at depth ¢?
—ift <d (sonot bottom): 2!
—ift=d (so bottom): < 2

e number nodes at bottom < [n /2]

proof: number nodes not at bottom 1+ 24 ...+ 241
number nodes at bottom < 24

UAlberta CS204 (© R. Hayward L12: Fri 31/01/2003 page 3

recall heapsort

proc. Heapsort(A) * at start of line 3, A[1..j] is heap

1 Build-Max-Heap(A)

2 for j <- length[A] downto 2

3 do exchange A[1] <-> A[j]

4 heapsize[A] <- heapsize[A]-1
5 Max-Heapify(A,1)

heapsort runtime in O(nlogn)

e phase 1: buildheap

— MH from positions n/2, n/2 —1, ..., 2, 1
— each takes O(lgn) time
— total time in O(nlgn)

e phase 2: remove max, swap, and MH

— for heapsizen — 1, n—2, ..., 2,1
— each takes O(lgn) time
— total time in O(nlgn)

e total heapsort runtime in O(nlgn)

UAlberta CS204 (© R. Hayward L12: Fri 31/01/2003

why?
why?

why?
why?

page 4

heapsort best case time, all keys distinct, in Q(nlogn)

e to simplify argument somewhat,

suppose n = 2F — 1 (so 2¥=! nodes on bottom)
o after 1st [n/2] = 287! keys sorted

— removed from initial heap: largest [2F71] keys

— remaining heap: smallest 28~ — 1 keys
e in original heap, for nodes with largest 2! keys:

— if node at bottom depth of heap colour node red

— if node not at bottom depth colour node blue
e blue nodes form binary tree
e by above, < 2572 red nodes, so > 2¥=2 > n /4 blue nodes
e how did each blue node leave? moved up to root
®SO...

— time for first [n/2] extractions ...
— > time to move all blue keys to root ...

— in (sum of depths of blue nodes)
n/4

—in QX lgj]) = Anlogn))
j:

UAlberta CS204 (© R. Hayward L12: Fri 31/01/2003 page 5

conclusions: heapsort run time
e WC in O(nlogn)
e BC, keys distinct, in 2(nlogn)

e 5o every case (keys distinct) in Q(nlogn)

e all keys equal: in O(n) exercise @

UAlberta CS204 (©) R. Hayward L12: Fri 31/01/2003 page 6

