Lecture 12: Friday January 31, 2003

today and next class: heapsort analysis

- will show these run time results:
 - time in $O(n \log n)$

proof is easy

 $- WC \Theta(n \log n)$

-BC

* all keys equal: $\Theta(n)$

* all keys distinct: $\Theta(n \log n)$

L12: Fri 31/01/2003

heap shaped tree: positions depth

1 0

some heap shaped binary tree facts

- def'n: depth of a node number of links in path to root
- ullet def'n: depth of tree max'm depth of node, say d

- number of nodes at depth t?
 - if t < d (so not bottom): 2^t - if t = d (so bottom): $\leq 2^t$
- number nodes at bottom $\leq \lceil n/2 \rceil$ proof: number nodes not at bottom $1+2+\ldots+2^{d-1}$ number nodes at bottom $\leq 2^d$

recall heapsort

```
proc. Heapsort(A) * at start of line 3, A[1..j] is heap
1 Build-Max-Heap(A)
2 for j <- length[A] downto 2
3   do exchange A[1] <-> A[j]
4    heapsize[A] <- heapsize[A]-1
5   Max-Heapify(A,1)</pre>
```

heapsort runtime in $O(n \log n)$

- phase 1: buildheap
 - MH from positions n/2, n/2-1, ..., 2, 1
 - each takes $O(\lg n)$ time why?
 - total time in $O(n \lg n)$ why?
- phase 2: remove max, swap, and MH
 - for heapsize n 1, n 2, ..., 2, 1
 - each takes $O(\lg n)$ time why?
 - total time in $O(n \lg n)$ why?

L12: Fri 31/01/2003

• total heapsort runtime in $O(n \lg n)$

heapsort best case time, all keys distinct, in $\Omega(n \log n)$

- to simplify argument somewhat, suppose $n = 2^k - 1$ (so 2^{k-1} nodes on bottom)
- after 1st $\lceil n/2 \rceil = 2^{k-1}$ keys sorted
 - removed from initial heap: largest $\lceil 2^{k-1} \rceil$ keys
 - remaining heap: smallest $2^{k-1} 1$ keys
- in original heap, for nodes with largest 2^{k-1} keys:
 - if node at bottom depth of heap colour node red
 - if node not at bottom depth colour node blue
- blue nodes form binary tree
- by above, $\leq 2^{k-2}$ red nodes, so $\geq 2^{k-2} > n/4$ blue nodes
- how did each blue node leave? moved up to root
- so ...
 - time for first $\lceil n/2 \rceil$ extractions ...
 - \ge time to move all blue keys to root . . .
 - in $\Omega($ sum of depths of blue nodes)
 - $\operatorname{in} \Omega(\sum_{j=1}^{n/4} \lfloor \lg j \rfloor) = \Omega(n \log n) \quad \textcircled{\bullet}$

conclusions: heapsort run time

- WC in $O(n \log n)$
- BC, keys distinct, in $\Omega(n \log n)$
- so every case (keys distinct) in $\Omega(n \log n)$
- all keys equal: in $\Theta(n)$

exercise

L12: Fri 31/01/2003