Lecture 6: Fri January 17, 2003

today

• sample answers to typical problems

announcements

• quizzes start Monday

L6: Fri 17/01/2003

4 typical problems

1. Prove the following pseudocode postcondition.

```
* postcondition: A[1] is maximum among A[1..n]
1 for j <- n downto 2 do
2  if A[j] > A[j-1] then
3  interchange A[j] <-> A[j-1]
```

- **2.** Prove that $\sum_{j=1}^{n} \lg j$ is in $\Theta(n \lg n)$.
- **3.** Let f(n) and g(n) be non-negative functions, let s(n) = f(n) + g(n), and let $m(n) = \max\{f(n), g(n)\}$. Prove or disprove: s(n) is in $\Theta(m(n))$.
- 4. Using Θ notation, give the simplest description of the running time of the following, assuming a uniform RAM model of computation.

```
1 for j <- 1 to n-2 do
2  for k <- j+1 to n-1 do
3  for m <- k+1 to n do
4  x <- x + a</pre>
```

an answer to 1.

- the key is to find a useful loop invariant
- LI: at start of 1, A[j] is max among A[j..n]
- now prove LI
- initialization: j = n, A[n] is max among A[n..n], so LI holds
- maintenance: assume LI holds for j = t, where $2 \le t \le n$
 - at start of 2, A[t] is max among A[t..n]
 - case 1: suppose $A[t] \le A[t-1]$
 - * at end of 2, $A[t-1] \ge \max \text{ among } A[t..n]$, so $A[t-1] \max \text{ among } A[t-1..n]$
 - * 3 does not execute, so next time 1 is reached A[t-1] is max among A[t-1..n]
 - case 2: suppose A[t] > A[t-1]
 - * at end of 2, A[t] max among A[t..n] and > A[t-1], so A[t] max among A[t-1..n]
 - * 3 executes, so next time 1 is reached A[t-1] max among A[t-1...n]
- init'n, maintenance, and induction imply that LI holds for all j with $1 \le j \le n$.
- termination
 - execution reaches 1 for last time with j=1
 - LI for j=1 implies A[1] is max among A[1..n]
 - so postcondition holds

an answer to 2. Let $s(n) = \sum_{j=1}^{n} \lg j$.

• for
$$n \ge 1$$
, $s(n) \le \sum_{i=1}^n \lg n = n \lg n$, so $s(n) \in O(n \lg n)$.

let
$$t = \lceil n/2 \rceil$$
 for $n \ge 2$, $s(n) \ge \sum_{j=t}^{n} \lg j$
 $\ge \sum_{j=t}^{n} \lg t$
 $\ge \frac{n-1}{2} \lg t$
 $\ge \frac{n-1}{2} \lg(n/2)$

for
$$n > 4$$
, $\lg \frac{n}{2} > \frac{\lg n}{2}$ so $s(n) \ge \frac{n-1}{2} \left(\frac{\lg n}{2}\right)$

$$= \frac{n}{4} \lg n - \frac{\lg n}{4}$$

$$= \frac{n}{8} \lg n + \frac{n}{8} \lg n - \frac{2 \lg n}{8}$$

$$= \frac{n}{8} \lg n + \frac{n \lg n - 2 \lg n}{8}$$

$$= \frac{n}{8} \lg n$$

$$> \frac{n}{8} \lg n$$

- so s(n) is in $\Omega(n \lg n)$.
- s(n) in $O(n \lg n)$ and $\Omega(n \lg n)$, so s(n) in $\Theta(n \lg n)$

an answer to 3.

- for each n, $f(n) \le m(n), \ g(n) \le m(n), \ \text{so } s(n) \le 2m(n), \ \text{so}$ $s(n) \in O(m(n))$
- for each n, $m(n) = f(n) \text{ or } m(n) = g(n), \ f(n) \ge 0, \ g(n) \ge 0, \text{ so}$ $s(n) \ge m(n), \text{ so } s(n) \in \Omega(m(n))$
- $s(n) \in O(m(n))$ and $s(n) \in \Omega(m(n))$ so $s(n) \in \Theta(m(n))$

an answer to 4.

• run time is in $\Theta(s(n))$ where $s(n) = \sum_{j=1}^{n-2} \sum_{k=j+1}^{n-1} \sum_{m=k+1}^{n} 1$

•
$$s(n) \le \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{m=1}^{n} 1 = \sum_{j=1}^{n} \sum_{k=1}^{n} n = \sum_{j=1}^{n} n^2 = n^3$$
, so $s(n) \in O(n^3)$

$$s(n) = \sum_{j=1}^{n-2} \sum_{k=j+1}^{n-1} (n-k)$$

$$= \sum_{j=1}^{n-2} (n(n-1-j) - \sum_{k=j+1}^{n-1} k)$$

$$= \sum_{j=1}^{n-2} (n(n-1-j) - (n-1-j)(n+j)/2)$$

$$= \frac{1}{2} \sum_{j=1}^{n-2} (n-1-j)(n-j)$$

$$\geq \frac{1}{2} \sum_{j=1}^{t} (n-1-t)(n-t) \quad \text{for } t = \lfloor \frac{n}{2} \rfloor$$

$$\geq \frac{1}{2} \frac{n-1}{2} \frac{n-2}{2} \frac{n}{2}$$

$$\geq \frac{(n/2)^2 n}{16} = \frac{n^3}{64} \quad \text{for } n \geq 4$$

- so $s(n) \in \Omega(n^3)$, and $O(n^3)$, so $s(n) \in \Theta(n^3)$
- so run time in $\Theta(n^3)$

- note: can show $s(n) = \binom{n}{3} = n(n-1)(n-2)/6$
- note: can show s(n) in $\Omega(n^3)$ using integration:

$$s(n) \ge \int_{j=1}^{n-1} \int_{k=j+1}^{n} \int_{m=k+1}^{n+1} 1 \ dm \ dk \ dj$$