Lecture 2: Wed Jan 08, 2003

today
e Intro

— sample alg’'m: insertion sort
— notation: psueudocode
— model of computation: RAM

— time analysis of insertion sort (using RAM)
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getting started [CLRS Ch. 2]

e algorithm? a well-defined computational procedure (namely, a se-
quence of elementary computational steps) which takes an input value
and produces an output value, according to a specified mathematical
function.

e describing alg’ms: pseudocode

e pseudocode example

input: integers a,b
output: axb

sum <- 0

for j <- 1 to b do
sum <- sum + a

return sum

e pseudocode conventions [CLRS p19]

— indentation <+ block structure

— while/for /repeat /if /then /else

— loop counters retain values

— ®or > comment

— variables local (unless stated otherwise)
— parameters passed by value

— boolean “short circuit” evaluation j>0 AND A[j] < key
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problem: sorting
input: sequence of n numbers (ay, as, . .., ay,)
output: permutation (af,aj, ..., al) such that o] <a) < ... <a

one sorting algorithm: insertion sort

e idea repeatedly insert A[j] into sorted sublist A[1 ... j — 1]
e insert how?

— gearch for insert loc'n in sequence Afj — 1] A[j —2] ...

— move contents to right during search

InsertionSort(A)  **sorts A[1l..n] in place CLRS page 17
for j <- 2 to length[A] do
key <- A[j]
*k insert A[j] into sorted sequence A[1l..j-1]
i<- j-1
while i>0 and A[i]>key do
Ali+1] <- A[il
i <-1i-1
A[i+1] <- key

0O NO Ok WD -~
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insertion sort trace
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algorithm analysis
e resources required (time/space)

e correctness

resources required (time/space)
e how to measure? implement and run (?)
e depends on input; language; machine; code; environment
e simplifying idea

— select theoretical computer model

— estimate resources on model
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representation of non-negative integers
elet N={0,1,2,...}

e recall: for any b,n in N with b > 0,

n has a unique base-b representation
e 13,p=11111111111114
e 13,9 = 1101,

o 13,y = 1115
e 13, = 31,
e 1319p = 235
e 13,9 = 21;
e 13, = 16,
e 1319 = 153
o 13,0 = 14,
e 13, — 13y
o 13, =12¢4
e 1319 = 1119
e 1350 = 103

e most computers use a binary (base 2) rep’n
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binary representation algorithm

precondition: n non-negative integer
postcondition: a is binary representation of n

m<-n j <- -1
repeat
j <- j+1
aljl <- m mod 2
m <-m/ 2

until m = 0

e trace: n=13

e correctness?

— loop terminates why? proof?
— final value of 57

— postcondition:

— proof by induction? (see CS272 text)
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our model of computation: RAM
e RAM: random access machine [CLRS p21-22]
e every location indexed, can be accessed in constant (7) time
e usual variation: uniform (unit) cost RAM model

— numbers not too large, so each number fits into one memory word
—e.g. x <- y takes constant time

— how long does x + y take?  x x y?
e more realistic variation: log cost RAM

— numbers may be very large, and so not fit into one memory word
— binary rep’n of number x needs about lg x bits

— assume k bits per word of memory (e.g. 64)

— basic operation on x takes time/space prop’l to number of words
—e.g. x <- y takes prop’l to (Igmax{x,y})/k time

— how long does x + y take?  x x y?

e unless otherwise stated, assume uniform cost RAM @
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RAM arithmetic costs

[] I Iy I o
+ [ + L 1]
[] I Iy I o
[] I Iy I O I
X [] . I O
[] I Iy I O I
I Iy I O
I Iy I O O
+ I Iy I O
(NN N N N o N o N I
uniform log
add 1 ~ (Ign)/k
mult 1 ~ ((Ign)/k)?

% assume k bits/cell
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more details of typical RAM machine

e components
— IT: input tape (read-only)
— OT: ouput tape (write-only)
— CU: computation unit (inc. program)
— M: memory locations (each can store integer)

MI[0] M[1] M[2] ...

— program: fixed user-defined instr. sequence

e properties

— CU instructions (each usually via register/accumulator)

* move data between memory
*x compare data and branch

* binary arithmetic op’ns

* read from I'T to memory

* write from memory to OT

e e.g. RAM instructions for z < = 4 y?

M[O] := M[@x] (*wherever x is*)

M[1] := M[@y] (*wherever y isx)

add (*M[0] := M[O] + M[1]%)
M[@z] := M[0] (*wherever z is gets sumx*)
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resource analysis of RAM programs
e time: instructions executed

e space: memory locations used

RAM model time analysis

e model of computation: RAM
e problem: running time varies with input
e idea

— estimate worst/average /best performance
— make estimate a function of input size

— e.g. sorting: size usually number of numbers

— guarantee of performance @

when presenting analysis

for algorithm run times, remember to state what you have counted (e.g.
RAM instructions? log RAM instructions? data moves? data compar-
isons? arithmetic operations? Pentium II clock cycles? etc.)
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kinds of time analysis

e worst case
— T'(n) max time over all inputs of size n
e average case

— must specify input distribution over which average computed

— most common: assume uniform (a.k.a. equiprobable) input dis-
tribution (all inputs of size n equally likely)

— useful but usually difficult

® best case

— useful for lower bounds

— not otherwise useful: any alg’'m can be modified to have fast best
case

(add: if input is [particular case| then return [particular answer)
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