Lecture 2: Wed Jan 08, 2003

today
e Intro

— sample alg’'m: insertion sort
— notation: psueudocode
— model of computation: RAM

— time analysis of insertion sort (using RAM)

UAlberta CS204 © R. Hayward L2: Wed 08/01/2003 page 1

getting started [CLRS Ch. 2]

e algorithm? a well-defined computational procedure (namely, a se-
quence of elementary computational steps) which takes an input value
and produces an output value, according to a specified mathematical
function.

e describing alg’ms: pseudocode

e pseudocode example

input: integers a,b
output: axb

sum <- 0

for j <- 1 to b do
sum <- sum + a

return sum

e pseudocode conventions [CLRS p19]

— indentation <+ block structure

— while/for /repeat /if /then /else

— loop counters retain values

— ®or > comment

— variables local (unless stated otherwise)
— parameters passed by value

— boolean “short circuit” evaluation j>0 AND A[j] < key

UAlberta CS204 © R. Hayward L2: Wed 08/01/2003 page 2

problem: sorting
input: sequence of n numbers (ay, as, . .., ay,)
output: permutation (af,aj, ..., al) such that o] <a) < ... <a

one sorting algorithm: insertion sort

e idea repeatedly insert A[j] into sorted sublist A[1 ... j — 1]
e insert how?

— gearch for insert loc'n in sequence Afj — 1] A[j —2] ...

— move contents to right during search

InsertionSort(A) **sorts A[1l..n] in place CLRS page 17
for j <- 2 to length[A] do
key <- A[j]
*k insert A[j] into sorted sequence A[1l..j-1]
i<- j-1
while i>0 and A[i]>key do
Ali+1] <- A[il
i <-1i-1
A[i+1] <- key

0O NO Ok WD -~

UAlberta CS204 (© R. Hayward L2: Wed 08/01/2003 page 3

insertion sort trace

53

21

21

21

14

14

77
21

53

47

47

21

21

77
47

?7?

47

53

53

47

38

77
62

?7?
62

77

62

62

53

47

UAlberta CS204 © R. Hayward

77
14

?7?
14

77
14

?7

14

62

53

77
38

77
38

77
38

?7
38

77
38

62

L2: Wed 08/01/2003

page 4

algorithm analysis
e resources required (time/space)

e correctness

resources required (time/space)
e how to measure? implement and run (?)
e depends on input; language; machine; code; environment
e simplifying idea

— select theoretical computer model

— estimate resources on model

UAlberta CS204 (© R. Hayward L2: Wed 08/01/2003 page 5

representation of non-negative integers
elet N={0,1,2,...}

e recall: for any b,n in N with b > 0,

n has a unique base-b representation
e 13,p=11111111111114
e 13,9 = 1101,

o 13,y = 1115
e 13, = 31,
e 1319p = 235
e 13,9 = 21;
e 13, = 16,
e 1319 = 153
o 13,0 = 14,
e 13, — 13y
o 13, =12¢4
e 1319 = 1119
e 1350 = 103

e most computers use a binary (base 2) rep’n

UAlberta CS204 (©) R. Hayward L2: Wed 08/01/2003 page 6

binary representation algorithm

precondition: n non-negative integer
postcondition: a is binary representation of n

m<-n j <- -1
repeat
j <- j+1
aljl <- m mod 2
m <-m/ 2

until m = 0

e trace: n=13

e correctness?

— loop terminates why? proof?
— final value of 57

— postcondition:

— proof by induction? (see CS272 text)

UAlberta CS204 (© R. Hayward L2: Wed 08/01/2003 page 7

our model of computation: RAM
e RAM: random access machine [CLRS p21-22]
e every location indexed, can be accessed in constant (7) time
e usual variation: uniform (unit) cost RAM model

— numbers not too large, so each number fits into one memory word
—e.g. x <- y takes constant time

— how long does x + y take? x x y?
e more realistic variation: log cost RAM

— numbers may be very large, and so not fit into one memory word
— binary rep’n of number x needs about lg x bits

— assume k bits per word of memory (e.g. 64)

— basic operation on x takes time/space prop’l to number of words
—e.g. x <- y takes prop’l to (Igmax{x,y})/k time

— how long does x + y take? x x y?

e unless otherwise stated, assume uniform cost RAM @

UAlberta CS204 (© R. Hayward L2: Wed 08/01/2003 page 8

RAM arithmetic costs

[] I Iy I o
+ [+ L 1]
[] I Iy I o
[] I Iy I O I
X [] . I O
[] I Iy I O I
I Iy I O
I Iy I O O
+ I Iy I O
(NN N N N o N o N I
uniform log
add 1 ~ (Ign)/k
mult 1 ~ ((Ign)/k)?

% assume k bits/cell

UAlberta CS204 (© R. Hayward L2: Wed 08/01/2003 page 9

more details of typical RAM machine

e components
— IT: input tape (read-only)
— OT: ouput tape (write-only)
— CU: computation unit (inc. program)
— M: memory locations (each can store integer)

MI[0] M[1] M[2] ...

— program: fixed user-defined instr. sequence

e properties

— CU instructions (each usually via register/accumulator)

* move data between memory
*x compare data and branch

* binary arithmetic op’ns

* read from I'T to memory

* write from memory to OT

e e.g. RAM instructions for z < = 4 y?

M[O] := M[@x] (*wherever x is*)

M[1] := M[@y] (*wherever y isx)

add (*M[0] := M[O] + M[1]%)
M[@z] := M[0] (*wherever z is gets sumx*)

UAlberta CS204 (© R. Hayward L2: Wed 08/01/2003 page 10

resource analysis of RAM programs
e time: instructions executed

e space: memory locations used

RAM model time analysis

e model of computation: RAM
e problem: running time varies with input
e idea

— estimate worst/average /best performance
— make estimate a function of input size

— e.g. sorting: size usually number of numbers

— guarantee of performance @

when presenting analysis

for algorithm run times, remember to state what you have counted (e.g.
RAM instructions? log RAM instructions? data moves? data compar-
isons? arithmetic operations? Pentium II clock cycles? etc.)

UAlberta CS204 © R. Hayward L2: Wed 08/01/2003 page 11

kinds of time analysis

e worst case
— T'(n) max time over all inputs of size n
e average case

— must specify input distribution over which average computed

— most common: assume uniform (a.k.a. equiprobable) input dis-
tribution (all inputs of size n equally likely)

— useful but usually difficult

® best case

— useful for lower bounds

— not otherwise useful: any alg’'m can be modified to have fast best
case

(add: if input is [particular case| then return [particular answer)

UAlberta CS204 © R. Hayward L2: Wed 08/01/2003 page 12

