
MSTs

Graphs

A graph G = (V,E) is a set V of nodes, or
vertices, and a set E of edges, where each
edge is a set of two nodes.
For an edge {x, y} of G, we say that x

and y are adjacent, or neighbours. The
degree of a node is its number of neigh-
bours.

a b

c
d e

f g

Exercise 1

For the above graph, give the node set and
edge set. For each node, give its degree
and set of neighbours.

Paths

In a graph, a path is a sequence (v1, . . . , vt)
of distinct nodes in which each consecu-
tive pair of nodes is adjacent. Here, we
say that there is a path from v1 to vt,
and v1 and vt are the ends of the path.
For example, in the above graph (b) and
(f, c, d, e) are paths, but (a, b) and (e, g, e)
are not paths.
A path is extendable if it is a proper

subsequence of another path. A path
is maximal if it is not extendable. For
example, (c, d) is extendable because
(c, a, d) is a path; (c, a, d) is extendable
because (f, c, a, d) is a path; (f, c, a, d)
is extendable because (f, c, a, d, e) is
a path; (f, c, a, d, e) is extendable be-
cause (f, c, a, d, e, g) is a path; and
(f, c, a, d, e, g) is a maximal path.

Exercise 2

For the above graph, give all maximal
paths.

Connectivity

Given a graph G = (V,E) and a node sub-
set S of V , G[S] is the subgraph induced

by S, namely the graph G[S] = (S,E[S]),
where E[S] is the set of edges of E with
both nodes in S. For example, for the
above graph, the subgraph induced by
S = {a, b, c, d} has node set S and edge
set {{a, c}, {a, d}, {c, d}}.
A graph is connected if, for each ordered

pair of nodes (x, y), there is a path from
x to y. A component of a graph G is a
induced subgraph G[S] such that G[S] is
connected, and no superset T of S induces
a connected subgraph. For example, the
graph above has two components, with
node sets {b}, and {a, c, d, e, f, g}.

Cycles

In a graph, a cycle is a path with at least
three nodes whose ends are also adjacent.
For example, in the above graph (a, d, c)
and (a, d, f, c) are cycles but (a, d, c, f) is
not.

Trees

A graph is acyclic if it has no cycles. A
forest is a graph that is acyclic. A tree is
a graph that it is acyclic and connected.

1



Minimum spanning subtrees

A subgraph of a graph is spanning if it
includes all nodes (but not necessarily
edges) of the graph. A weighted graph has
weights on the edges. A spanning subtree

of a graph is a spanning subgraph that is
a tree (so, acyclic and connected).

Notice that a graph must be connected
if it has a spanning tree, so whenever we
ask for a spanning subtree of a graph, we
assume that the graph is connected. The
weight of a spanning subtree T is the sum
of the weights of the edges of T . A min-

imum spanning subtree (MST) of a con-
nected weighted graph G is a spanning
subtree with minimum weight, among all
spanning subtrees of G.

Tree properties

For a graph G = (V,E) and an edge e 6∈
E, G+e is the graph with node set V and
edge set E ∪ {e}.

Property 1 Let G = (V,E) be a graph
with a cycle C, and let e be an edge of
C. Let G′ = G− e be the graph obtained
from G by removing e from E. Let X be a
component of G. Then X is a component
of G′.

So, removing one edge of a cycle does
not change any of the components.

Property T In a tree with at least 2
nodes, there is a path with at least 2
nodes, and the ends of a longest path each
have degree 1.

Property 2 A tree with n nodes has ex-
actly n− 1 edges.

Sketch of proof: use Property T. Argue
by induction on n.

Property 3 A connected graph with n

nodes and n− 1 edges is a tree.
Sketch of proof: For n ≥ 2, there is a

node with degree 1. (argue by contradic-
tion). Show that removing it leaves a con-
nected graph with n− 1 nodes and n− 2
edges. Argue by induction.

Property 4 A graph is a tree if and only
if, between each pair of nodes, there is a
unique path.
Sketch of proof: Assume G is a tree. So,

between each pair of nodes, why is there a
path? And why are there not two paths?
Next assume that G is a graph with the
above betweenness property. Why is G

connected? Why is G acyclic?

Property 5 Let T be a spanning tree of
a graph G, and let e be an edge not in T .
Then T + e has a cycle C, and for every
edge c of C, T + e− c is a spanning tree.
Furthermore, if T is an MST of G, then
w(e) ≥ w(c).

Exercise 3

Prove Property 5. First prove that T+e

has a cycle. Next prove that T + e − c

is connected. Next prove that T + e − c

is acyclic. Next prove that T + e − c is
spanning. Next prove that w(e) ≥ w(c).

2



Choice

As input to Kruskal’s algorithm, we al-
low any weighted graph, so edge weights
are not necessarily distinct. So, an exe-
cution of Kruskal’s algorithm will have a
choice whenever there is more than one
unselected edge with minimum weight.

Kruskal is correct

Here we explain why Kruskal’s algorithm
is correct, i.e. why every tree returned
is an mst. With respect to the input
weighted graph, call a treeKruskal if there
is some execution of Kruskal’s algorithm
that returns that tree.

Theorem: for any weighted graph G,

every Kruskal tree is an MST.

Exercise 4

Prove the above theorem. Use
whichever of the tree properties are
needed. Hint: see the webnotes.

3



Kruskal is complete

Here we show that Kruskal is complete,
i.e. that every mst of a graph will be re-
turned by some execution of Kruskal’s al-
gorithm.

Theorem: for any weighted graph G,

every MST is Kruskal.

Sketch of proof. Let T be an arbi-
trary MST. For an execution of Kruskal’s
algorithm and resulting MST K, let
k1, k2, . . . , kn−1 be the edges of K in the
order they were selected. We say that k1
was picked in step 1, k2 in step 2, and so
on.
If T = K then our MST T is a Kruskal

MST and we are done.
Now suppose T 6= K. So there is a first

step q for which kq is not in T . We will
show how to find another Kruskal execu-
tion with edges k′

1
, k′

2
, . . . , k′

n−1
and tree

K ′ where the first step x for which k′

x is
not in T satisfies x > q. By repeating this
process at most n − 1 times, we will end
with a Kruskal execution whose tree is T .
So, how do we find K ′?
Let a, b be the nodes of edge kq. Con-

sider the graph T + kq. T is a tree, so
connected, so there is in T a path P =
(v1, . . . , vt) with a = v1 and b = v2, so in
T + kq the sequence P is a cycle.
If all edges of P are in K ′, then P + kq

is a cycle of K’, contradicting that K ′ is a
tree. So there is some edge z of P which
is not in K ′. So, at Step q, when Kruskal
picked kq, it could have picked z but did
not. So w(kq) ≤ w(z).
But by Property 5, T + kq − z is a

spanning tree whose weight must be at
least that of the weight of the MST T , so
w(kq) ≥ w(z).
So we have w(kq) ≤ w(z) and w(kq) ≥

w(z), so have w(kq) = w(z). Also, all

edges k1, . . . , kq−1 and also z are in T ,
which is acyclic. So, at step q, Kruskal
can pick z instead of kq, leading to a new
execution of Kruskal, in which the first
edge it picks that is not in T will be at
some step x after step q. So we are done.
�

a

b

4



mst

a

b

c

d

e

f

g

h

j

k

m

n

p

q

r

s

t

v

w

9

3

6

2

5

8

7

4

1

6

9

2

7

5

8

3

7

5

4

8

1

6

11

3

7

5

9

10

1

8

4

32

33

34

35

36

37

38

39

40

41

42

5



mst

9

3

6

2

5

8

7

4

1

6

9

2

7

5

8

3

7

5

4

8

1

6

11

3

7

5

9

10

1

8

4

32

33

34

35

36

37

38

39

40

41

42

6



mst

a

b

c

d

e

f

g

h

j

k

m

n

p

q

r

s

t

v

w

9

3

6

2

5

8

7

4

1

6

9

2

7

5

8

3

7

5

4

8

1

6

11

3

7

5

9

10

1

8

4

32

33

34

35

36

37

38

39

40

41

42

7



Kruskal mst

a

b

c

d

e

f

g

h

j

k

m

n

p

q

r

s

t

v

w

1 1

1

8


