
Column 7: Algorithm Design Techniques
Column 2 describes the "everyday" impact that algorithm design can have on programmers: an
algorithmic view of a problem gives insights that can make a program simpler to understand and to
write. In this column we'll study a contribution of the field that is less frequent but more
impressive: sophisticated algorithmic methods sometimes lead to dramatic performance
improvements.

This column is built around one small problem, with an emphasis on the algorithms that solve it
and the techniques used to design the algorithms. Some of the algorithms are a little complicated,
but with justification. While the first program we'll study takes thirty-nine days to solve a problem
of size ten thousand, the final one solves the same problem in less than a second.

7.1 The Problem and a Simple Algorithm
The problem arose in one-dimensional pattern recognition; I'll describe its history later. The input
is a vector X of N real numbers; the output is the maximum sum found in any contiguous subvector
of the input. For instance, if the input vector is

31 -41 26 5859 97-53 -93 84-23

3 7

then the program returns the sum of X[3..7], or 187. The problem is easy when all the numbers
are positive—the maximum subvector is the entire input vector. The rub comes when some of the
numbers are negative: should we include a negative number in hopes that the positive numbers to
its sides will compensate for its negative contribution? To complete the definition of the problem,
we'll say that when all inputs are negative the maximum sum subvector is the empty vector, which
has sum zero.

The obvious program for this task iterates over all pairs of integers L and U satisfying 1≤L≤U≤N;
for each pair it computes the sum of X[L..U] and checks whether that sum is greater than the
maximum sum so far. The pseudocode for Algorithm 1 is

MaxSoFar := 0.0
for L := 1 to N do
for U := L to N do

Sum := 0.0
for I := L to U do

Sum : = Sum + X[I]
/* Sum now contains the sum of X[L..U] */
MaxSoFar := max(MaxSoFar, Sum)

This code is short, straightforward, and easy to understand. Unfortunately, it has the severe
disadvantage of being slow. On the computer I typically use, for instance, the code takes about an
hour if N is 1000 and thirty-nine days if N is 10,000; we'll get to timing details in Section 7.5.

Those times are anecdotal; we get a different kind of feeling for the algorithm's efficiency using the
"big-oh" notation described in Section 5.1. The statements in the outermost loop are executed
exactly N times, and those in the middle loop are executed at most N times in each execution of the

outer loop. Multiplying those two factors of N shows that the four lines contained in the middle
loop are executed O(N2) times. The loop in those four lines is never executed more than N times, so
its cost is O(N). Multiplying the cost per inner loop times its number of executions shows that the
cost of the entire program is proportional to N cubed, so we'll refer to this as a cubic algorithm.

This example illustrates the technique of big-oh analysis of run time and many of its strengths and
weaknesses. Its primary weakness is that we still don’t really know the amount of time the program
will take for any particular input; we just know that the number of steps it executes is O(N3). That
weakness is often compensated for by two strong points of the method. Big-oh analyses are usually
easy to perform (as above), and the asymptotic run time is often sufficient for a back-of-the-
envelope calculation to decide whether or not a program is efficient enough for a given application.

The next several sections use asymptotic run time as the only measure of program efficiency. If
that makes you uncomfortable, peek ahead to Section 7.5, which shows that for this problem such
analyses are extremely informative. Before you read further, though, take a minute to try to find a
faster algorithm.

7.2 Two Quadratic Algorithms
Most programmers have the same response to Algorithm 1: "There's an obvious way to make it a
lot faster." There are two obvious ways, however, and if one is obvious to a given programmer then
the other often isn't. Both algorithms are quadratic—they take O(N2) steps on an input of size N—
and both achieve their run time by computing the smn of X[L..U] in a constant number of steps
rather than in the U-L+ I steps of Algorithm 1. But the two quadratic algorithms use very
different methods to compute the sum in constant time.

The first quadratic algorithm computes the sum quickly by noticing that the sum of X[L..U] has
an intimate relationship to the sum previously computed, that of X[L..U-1]. Exploiting that
relationship leads to Algorithm 2.

MaxSoFar := 0.0
for L := 1 to N do
Sum := 0.0
for U := L to N do

Sum := Sum + X[U]
/* Sum now contains the sum of X[L..U] */
MaxSoFar := max(MaxSoFar, Sum)

The statements inside the first loop are executed N times, and those inside the second loop are
executed at most N times on each execution of the outer loop, so the total run time is O(N2).

An alternative quadratic algorithm computes the sum in the inner loop by accessing a data structure
built before the outer loop is ever executed. The Ith element of CumArray contains the cumulative
sum of the values in X[l..I], so the sum of the values in X[L..U] can be found by computing
CumArray[U]—CumArray[L-1]. This results in the following code for Algorithm 2b.

CumArray[0] := O.O
for I := 1 to N do
CumArray[I] := CumArray[I-1] + X[I]

MaxSoFar := 0.0
for L := 1 to N do
for U := L to N do

Sum := CumArray[U] - CumArray[L-1]
/* Sum now contains the sum of X[L..U] */
MaxSoFar := max(MaxSoFar, Sum)

This code takes O(N2) time; the analysis is exactly the same as the analysis of Algorithm 2.

The algorithms we've seen so far inspect all possible pairs of starting and ending values of
subvectors and consider the sum of the numbers in that subvector. Because there are O(N2)
subvectors, any algorithm that inspects all such values must take at least quadratic time. Can you
think of a way to sidestep this problem and achieve an algorithm that runs in less time?

7.3 A Divide-an~l-Conquer Algorithm
Our first subquadratic algorithm is complicated; if you get bogged down in its details, you wontt
lose much by skipping to the next section. It is based on the following divide-and-conquer schema:

To solve a problem of size N, recursively solve two
subproblems of size approximately N/2, and combine their
solutions to yield a solution to the complete problem.

In this case the original problem deals with a vector of size N, so the most natural way to divide it
into subproblems is to create two subvectors of approximately cqual size, which we'll call A and B.

A B

We then recursively find the maximum subvectors in A and B, which we'll call MA and MB.

MA MB

lt is tempting to think that we have solved the problem because the maximum sum subvector of the
entire vector must be either MA or MB, and that is almost right. In fact, the maxinum is either entirely
in A, entirely in B, or it crosses the border between A and B; we'll call that MC for the maximum
crossing the border.

MC

Thus our divide-and-conquer algorithm will compute MA and MB recursively, compute MC by some
other means, and then return the maximum of the three.

That description is almost enough to write code. All we have left to describe is how we'll handle
small vectors and how we'll compute MC. The former is easy: the maximum of a one-element vector
is the only value in the vector or zero if that number is negative, and the maximum of a zero-
element vector was previously defined to be zero. To compute MC we observe that its component in
A is the largest subvector starting at the boundary and reaching into A, and similarly for its

component in B. Putting these facts together leads to the following code for Algorithm 3, which is
originally invoked by the procedure call

Answer : = MaxSum(1, N)

recursive function MaxSum(L, U)
if L > U then /* Zero-element vector */

return 0.0
if L = U then /* One-element vector */

return max(0.0, X[L])

M := (L+U)/2 /* A is X[L..M], B is X[M+1..U] */
/* Find max crossing to left */

Sum := 0.0; MaxToLeft := 0.0
for I := M downto L do

Sum := Sum + X[I]
MaxToLeft := max(MaxToLeft, Sum)

/* Find max crossing to right */
Sum := 0. 0; MaxToRight := 0.0
for I := M+1 to U do

Sum := Sum + X[I]
MaxToRight := max(MaxToRight, Sum)

MaxCrossing := MaxToLeft + MaxToRight
MaxInA := MaxSum(L,M)
MaxInB := MaxSum(M+1,U)
return max(MaxCrossing, MaxInA, MaxinB)

The code is complicated and easy to get wrong, but it solves the problem in O(N log N) time.
There are a number of ways to prove this fact. An informal argument observes that the algorithm
does O(N) work on each of O(log N) levels of recursion. The argument can be made more precise
by the use of recurrence relations. If T(N) denotes the time to solve a problem of size N, then
T(l)=O(1) and

T(N) = 2T(N/2) + O(N).

Problem 11 shows that this recurrence has the solution T(N) = 0(N log N).

7.4 A Scanning Algorithm
We'll now use the simplest kind of algorithm that operates on arrays: it starts at the left end
(element X[1]) and scans through to the right end (element X[N]), keeping track of the maximum
sum subvector seen so far. The maximum is initially zero. Suppose that we've solved the problem
for X[l..I—1]; how can we extend that to a solution for the first I elements? We use reasoning
similar to that of the divide-and-conquer algorithm: the maximum sum in the first I elements is
either the maximum sum in the first I-1 elements (which we'll call MaxSoFar), or it is that of a
subvector that ends in position I (which we'll call MaxEndingHere).

MaxSoFar MaxEndingHere

I

Recomputing MaxEndingHere from scratch using code like that in Algorithm 3 yields yet
another quadratic algorithm. We can get around this by using the technique that led to Algorithm 2:
instead of computing the maximum subvector ending in position I from scratch, we'll use the
maximum subvector that ends in position I-1. T his results in Algorithrn 4.

MaxSoFar := 0.0
MaxEndingHere := 0.0
for I := 1 to N do
/* Invariant: MaxEndingHere and MaxSoFar are accurate for

X[1..I-1] */
MaxEndingHere := max(MaxEndingHere+X[I], 0.0)
MaxSoFar := max(MaxSoFar, MaxEndingHere)

The key to understanding this program is the variable MaxEndingHere. Before the first
assignment statement in the loop, MaxEndingHere contains the value of the maximum subvector
ending in position I-1; the assignment statement modifies it to contain the value of the maximum
subvector ending in position 1. The statement increases it by the value X[I] so long as doing so
keeps it positive; when it goes negative, it is reset to zero because the maximurn subvector ending
at I is the empty vector. Although the code is subtle, it is short and fast: its run time is O(N), so
we'll refer to it as a linear algorithm. David Gries systematically derives and verifies this algorithm
in his paper "A Note on the Standard Strategy for Developing Loop Invariants and Loops" in the
journal Science of Computer Programming 2, pp. 207-214.

7.5 What Does It Matter?
So far I've played fast and loose with "big-ohs"; it's tirne for me to come clean and tell about the
run times of the programs. I implemented the four primary algorithms (all except Algorithm 2b) in
the C language on a VAX11/750, timed them, and extrapolated the observed run tirnes to achieve
the following table.

ALGORITHM 1 2 3 4
Lines of C Code 8 7 14 7
Run time in microseconds 3.4N3 13N2 46N log2 N 33N

102 3.4 secs .13 secs .03 secs .003 secs
103 .94 hrs 13 secs .45 secs .033 secs
104 39 days 22 mins 6.1 secs .33 secs
105 108 yrs 1.5 days 1.3 mins 3.3 secs

Time to solve a
problem of size

106 108 mill 5 mos 15 mins 33 secs
sec 67 280 2000 30,000
min 260 2200 82,000 2,000,000
hr 1000 17,000 3,500,000 120,000,000

Max size problem
solved in one

day 3000 81,000 73,000,000 2,800,000,000
If N multiplies by 10, time
multiplies by

1000 100 10+ 10

If time multiplies by 10, N
multiplies by

2.15 3.16 10- 10

This table makes a number of points. The most important is that proper algorithm design can make
a big difference in run time; that point is underscored by the middle rows. The last two rows show
how increases in problem size are related to increases in run time.

Another important point is that when we're comparing cubic, quadratic, and linear algorithms with
one another, the constant factors of the programs don't matter much. (The discussion of the O(N!)
algorithm in Section 2.4 shows that constant factors matter even less in functions that grow faster
than polynomially.) To underscore this point, I conducted an experiment in which I tried to make
the constant factors of two algorithms differ by as much as possible. To achieve a huge constant
factor I implemented Algorithm 4 on a BASIC interpreter on a Radio Shack TRS-80 Model III
microcomputer. For the other end of the spectrum, Eric Grosse and I implemented Algorithm 1 in
fine-tuned FORTRAN on a Cray-1 supercomputer. We got the disparity we wanted: the run time of
the cubic algorithm was measured as 3.0N3 nanoseconds, while the run time of the linear algorithm
was 19.5N rnilliseconds, or 19,500,000N nanoseconds. This table shows how those expressions
translate to times for various problem sizes.

N CRAY-1,
FORTRAN,
CUBIC ALGORITHM

TRS-80,
BASIC,
LINEAR ALGORITHM

10 3.0 microsecs 200 millisecs
100 3.0 millisecs 2.0 secs
1000 3.0 secs 20 secs
10,000 49 mins 3.2 mins
100,000 35 days 32 mins
1,000,000 95 yrs 5.4 hrs

The difference in constant factors of six and a half million allowed the cubic algorithm to start off
faster, but the linear algorithm was bound to catch up. The break-even point for the two algorithms
is around 2,500, where each takes about fifty seconds.

century

month

hour

second

millisecond

microsecond

nanosecond

1018

1015

1012

109

106

103

100

100 101 102 103 104 105 106

TRS-80

Cray-1

7.6 Principles
The history of the problem sheds light on the algorithm design techniques. The problem arose in a
pattern-matching procedure designed by Ulf Grenander of Brown University in the two-
dimensional form described in Problem 7. In that form, the maximum sum subarray was the
maximum likelihood estimator of a certain kind of pattern in a digitized picture. Because the two-
dimensional problem required too much time to solve, Grenander simplified it to one dimension to
gain insight into its structure.

Grenander observed that the cubic time of Algorithm 1 was prohibitively slow, and derived
Algorithm 2. In 1977 he described the problem to Michael Shamos of UNILOGIC, Ltd. (then of
Carnegie-Mellon University) who overnight designed Algorithm 3. When Shamos showed me the
problem shortly thereafter, we thought that it was probably the best possible; researchers had just
shown that several similar problems require time proportional to N log N. A few days later
Shamos described the problem and its history at a Carnegie-Mellon seminar attended by statistician
Jay Kadane, who designed Algorithm 4 within a minute. Fortunately, we know that there is no
faster algorithm: any correct algorithm must take O(N) time.

Even though the one-dimensional problem is completely solved, Grenander's original two-
dimensional problem remained open eight years after it was posed, as this book went to press.
Because of the computational expense of all known algorithms, Grenander had to abandon that
approach to the pattern-matching problem. Readers who feel that the linear-time algorithm for the
one-dimensional problem is "obvious" are therefore urged to find an "obvious" algorithm for
Problem 7!

The algorithms in this story were never incorporated into a system, but they illustrate important
algorithm design techniques that have had substantial impact on many systems (see Section 7.9).

Save state to avoid recomputation. This simple form of dynamic programming arose in
Algorithms 2 and 4. By using space to store results, we avoid using time to recompute
them.

Preprocess information into data structures. The CumArray structure in Algorithm 2b
allowed the sum of a subvector to be computed in just a couple of operations.

Divide-and-conquer algorithms. Algorithm 3 uses a simple form of divide-and-conquer;
textbooks on algorithm design describe more advanced forms.

Scanning algorithms. Problems on arrays can often be solved by asking “how can I extend a
solution for X[1..I-1] to a solution for X[l..I]?” Algorithm 4 stores both the old
answer and some auxiliary data to compute the new answer.

Cumulatives. Algorithm 2b uses a cumulative table in which the Ith element contains the
sum of the first I values of X; such tables are common when dealing with ranges. In
business data processing applications, for instance, one finds the sales from March to
October by subtracting the February year-to-date sales from the October year-to-date sales.

Lower bounds. Algorithm designers sleep peacefully only when they know their algorithms
are the best possible; for this assurance, they must prove a matching lower bound. The
linear lower bound for this problem is the subject of Problem 9; more complex lower
bounds can be quite difficult.

7.7 Problems
1. Algorithms 3 and 4 use subtle code that is easy to get wrong. Use the program verification

techniques of Column 4 to argue the correctness of the code; specify the loop invariants
carefully.

2. Our analysis of the four algorithms was done only at the "big-oh" level of detail. Analyze the
number of max functions used by each algorithm as exactly as possible; does this exercise give
any insight into the running times of the programs? How much space does each algorithm
require?

3. We defined the maximum subvector of an array of negative numbers to be zero, the sum of the
empty subvector. Suppose that we had instead defined the maximum subvector to be the value
of the largest element; how would you change the programs?

4. Suppose that we wished to find the subvector with the sum closest to zero rather than that with
maximum sum. What is the most efficient algorithm you can design for this task? What
algorithm design techniques are applicable? What if we wished to find the subvector with the
sum closest to a given real number T?

5. A turnpike consists of N-I stretches of road between N toll stations; each stretch has an
associated cost of travel. It is trivial to tell the cost of going between any two stations in O(N)
time using only an array of the costs or in constant time using a table with O(N2) entries.
Describe a data structure that requires O(N) space but allows the cost of any route to be
computed in constant time.

6. After the array X[l..N] is initialized to zero, N of the following operations are performed

for I := L to U do
X[I] := X[I] + V

where L, U and V are parameters of each operation (L and U are integers satisfying 1≤L≤U≤N
and V is a real). After the N operations, the values of X[1] through X[N] are reported in order.
The method just sketched requires O(N2) time. Can you find a faster algorithm?

7. In the maximum subarray problem we are given an NXN array of reals, and we must find the
maximum sum contained in any rectangular subarray. What is the complexity of this problem?

8. Modify Algorithm 3 (the divide-and-conquer algorithm) to run in linear worst-case time.
9. Prove that any correct algorithm for computing maxinium subvectors must inspect all N inputs.

(Algorithms for some problems may correctly ignore some inputs; consider Saxe's algorithm in
Solution 2.2 and Boyer and Moore's substring searching algorithm in the October 1977
CACM.)

10. Given integers M and N and the real vector X[1..N], find the integer I (I≤N-M) such that the
sum X[I]+… +X[I+M] is nearest zero.

11. What is the solution of the recurrence T(N) = 2T(N/2) + CN when T(1)=0 and N is a
power of two? Prove your result by mathematical induction. What if T(1) = C?

7.8 Further Reading
Only extensive study can put algorithm design techniques at your fingertips; most programmers
will get this only from a texthook on algorithms. Data Structures and Algorithms by Aho, Hopcroft
and Ullman (published by Addison-Wesley in 1983) is an excellent undergraduate text. Chapter 10
on "Algorithm Design Techniques" is especially relevant to this column.

7.9 The Impact of Algorithms [Sidebar]
Although the problem studied in this column illustrates several important techniques, it's really a
toy—it was never incorporated into a system. We'll now survey a few real problems in which
algorithm design techniques proved their worth.

Numerical Analysis. The standard example of the power of algorithm design is the discrete Fast
Fourier Transform (FFT). Its divide-and-conquer structure reduced the time required for Fourier
analysis from O(N2) to O(N logN). Because problems in signal processing and time series analysis
frequently process inputs of size N = 1000 or greater, the algorithm speeds up programs by factors
of more than one hundred.

In Section 10.3.C of his Numerical Methods, Software, and Analysis (published in 1983 by
McGraw-Hill), John Rice chronicles the algorithmic history of three-dimensional elliptic partial
differential equations. Such problems arise in simulating VLSI devices, oil wells, nuclear reactors,
and airfoils. A small part of that history (mostly but not entirely from his book) is given in the
following table. The run time gives the number of floating point operations required to solve the
problem on an NxNxN grid.

METHOD YEAR RUN TIME
Gaussian Elimination 1945 N7

SOR Iteration (Suboptimal
Paramctcrs)

1954 8N5

SOR Iteration (Optimal
Parameters)

1960 8N4 1og2 N

Cyclic Rcduction 1970 8N3 log2 N
Multigrid 1978 60N3

SOR stands for "successive over-relaxation". The O(N3) time of Multigrid is within a constant
factor of optimal because the problem has that many inputs. For typical problem sizes (N=64), the
speedup is a factor of a quarter million. Pages 1090-1091 of "Programming Pearls" in the
November 1984 Communications of the ACM present data to support Rice's argument that the
algorithmic speedup from 1945 to 1970 exceeds the hardware speedup during that period.

Graph Algorithms. In a common method of building integrated circuitry, the designer describes an
electrical circuit as a graph that is later transformed into a chip design. A popular approach to
laying out the circuit uses the "graph partitioning" problem to divide the entire electrical circuit into
subcomponents. Heuristic algorithms for graph partitioning developed in the early 1970's used
O(N2) time to partition a circuit with a total of N components and wires. Fiduccia and Mattheyses
describe "A linear-time heuristic for improving network partition" in the 19th Design Automation

Conference. Because typical problems involve a few thousand components, their method reduces
layout time from a few hours to a few minutes.

Geometric Algorithms. Late in their design, integrated circuits are specified as geometric “artwork”
that is eventually etched onto chips. Design systems process the artwork to perform tasks such as
extracting the electrical circuit it describes, which is then compared to the circuit the designer
specified. In the days when integrated circuits had N= 1000 geometric figures that specified 100
transistors, algorithms that compared all pairs of geometric figures in O(N2) time could perform the
task in a few minutes. Now that VLSI chips contain millions of geometric components, quadratic
algorithms would take months. "Plane sweep" or "scan line" algorithms have reduced the run time
to O(N log N), so the designs can now be processed in a few hours. Szymanski and Van Wyk's
"Space efficient algorithms for VLSI artwork analysis" in the 20th Design Automation Conference
describes efficient algorithms for such tasks that use only O(√N) primary memory (a later version
of the paper appears in the June 1985 IEEE Design and Test).

Appel's program described in Section 5.1 uses a tree data structure to represent points in 3-space
and thereby reduces an O(N2) algorithm to O(N log N) time. That was the first step in reducing
the run time of the complete program from a year to a day.

Programming Pearls by Jon Bentley
Addison-Wesley Publishing Company
Reading, Massachussetts
April, 1986

