Runtime of recursive Fibonacci computation

Define c(0) = 1, c(1) = 1, and for $n \ge 2$, c(n) = 1 + c(n-1) + c(n-2) **Claim** For all $n \ge 1$, $c(n) \ge t1.6^n$, where t is a constant **Proof** by induction

Base case below

Inductive case Let $k \ge 2$ be an integer. Assume claim holds for all non-negative integers less than k.

Now

$$\begin{aligned} c(k) &= 1 + c(k-1) + c(k-2) & \text{by definition of } c() \\ &> c(k-1) + c(k-2) & \text{drop the 1} \\ &\ge t 1.6^{k-1} + t 1.6^{k-2} & \text{inductive assumption} \\ &= t(1.6+1) 1.6^{k-2} & \text{arithmetic} \\ &= t(2.6) 1.6^{k-2} & \text{arithmetic} \\ &> t(1.6^2) 1.6^{k-2} & \text{since} 2.6 > 2.56 = 1.6^2 \\ &= t 1.6^{k-2+2} = t 1.6^k & \text{arithmetic} \end{aligned}$$

So assuming that the claim holds for non-negative integers n < k implies that the claim also holds for n = k, so the claim holds for all non-negative integers (once we prove that the claim holds in the base case).

Base case What should t be so claim holds for $n \leq 1$? For n = 0, c(n) = 1, and $1.6^0 = 1$, so here claim holds as long as as $t \leq 1$. For n = 1, c(n) = 1, and $1.6^n = 1.6$, so here the claim holds as long as $t \leq 1/1.6 = 5/8$. So set t to minimum of these two values, so 5/8, and now the claim holds for all $n \geq 0$. Corollary $c(n) \in \Omega(1.6^n)$ Let $\alpha = (1 + \sqrt{5})/2$ Remark: also $c(n) \in \Omega(\alpha^n)$ Exercise exists t, $c(n) \leq t1.7^n - 1$, so $c(n) \in O(1.7^n)$ Remark: also $O(\alpha^n)$ Corollary to remarks $c(n) \in \Theta(\alpha^n)$