
CMPUT 204 - Seminar Practice Questions #1

Weeks of: September 9, 16 and 23, 2013

Scope. Problems involving mathematical equalities, relations, and summations that arise frequently in the
counting arguments underlying the analysis of algorithms; inductive proofs and their applications; design
and analysis of non-recursive algorithms, O-notation warm-up

Problems selected from the following list will be discussed in the seminars, as time permits.

1. [Summation]

(a) Derive a closed form expression for
n∑

i=a

i, where a is an integer with 1 ≤ a ≤ n. Hint:
n∑

i=1

i =

n(n+ 1)/2

(b) (The Telescoping method) Show that for any sequence a0, a1, · · · , an of numbers,
n∑

k=1

(ak − ak−1) = an − a0 and
n−1∑
k=0

(ak − ak+1) = a0 − an.

(c) Using b) derive a closed form expression for
n−1∑
k=1

1

k(k + 1)
. Hint: define ak such that ak−ak+1 =

1/(k(k + 1)).

2. [Logarithms] For c > 0, logc x is defined by clogcx = x.

(a) Using the basic definition of logarithms and no other property, prove the identity:

loga x =
logb x

logb a
,

where a, b, and x > 0. This shows that logarithms to different bases only differ in constant
factors.

(b) What is log nk? Hint: (ab)c = abc

(c) Using log(a · b) = log a+ log b, part (b), and Stirling’s approximation n! ≈
√

2πn(n/e)n give an
approximation for loge(n!).

3. [Mathematical Induction] Prove the following statements by mathematical induction:

(a)
∑n

i=1 i
2 ≤ n3 for all n ≥ 1.

(b)
∑n

i=1(2i− 1) = n2 for all n ≥ 1.

4. [Program Correctness]

Prove that the following pseudo-code is correct, i.e., it returns max
i=0..n−1

A[i].

// assume n >= 1

// input: array of n numbers

// output: maximum value in the array

function max(A[0..n-1])

m = A[0]

i = 1

while i < n do

if A[i] > m then

m = A[i]

end

1



i = i + 1 (*)

end

return m

Hint: First show, that the program always terminates. Then prove that the loop invariant (m =
maxj=0..i−1A[j]) ∧ i ≤ n holds before the program enters the while-loop and right after line (*)
when the loop body was executed. Finally, prove that the loop invariant and the loop exit condition
together imply the program’s correctness.

5. [Pseudo Code] You have available the following global variables: a constant N , an array Q[0 · · ·N ]
of N + 1 integers, and two variables Qfront and Qrear. Without using new variables (not even a
temporary variable!), explain how to implement a queue (first-in first-out) data structure that can
hold at most N integers and executes each of the following basic operations in constant time (i.e. the
time is independent of N):

(a) Qinit(Q): initialize Q to be empty.

(b) Isempty(Q): return 1 if Q is empty, else return 0.

(c) Isfull(Q): return 1 if Q is full, else return 0.

(d) Qadd(x,Q): if Q is not full then add x to the end.

(e) Qremove(Q): if Q is not empty then remove the item at the front.

Write pseudo-code for each of the above functions.

6. [Induction and Recursive Algorithms] Use induction to prove that the following recursive algorithm
computes 3n − 2n for all n ≥ 0.

// assume n >= 0

function g(n)

if n <= 1 then

return n

end

return 5*g(n-1) - 6*g(n-2)

7. [O-notation]

(a) Prove or disprove: 2n+1 ∈ O(2n), 22n ∈ O(2n)

(b) Show that O(1) is the set of bounded functions.

(c) Explain why the statement “The runtime of algorithm A is at least O(n2)” is meaningless.

The following summations frequently arise when analyzing algorithms. You may use them in solving prob-
lems.

∑n
i=2

1
i ≤ lnn

∑n
i=1 i = n(n+1)

2

∑n
i=0 2i = 2n+1 − 1

∑n
i=1 i2

i = (n− 1)2n+1 + 2

∑n
i=1 i

2 = 2n3+3n2+n
6

∑n
i=0

1
2i

= 2− 1
2n

2


