
Chapter 9 – Solutions

2

9.1 The algorithm first fixes any variables appearing as a 1-literal clause and then chooses a value for a
variable in a 2-clause. We prove that the time taken is O(n2), where n is the number of variables.

Given a formula ϕ with n variables, we can first fix any variables appearing in a clause with just one
variable. This takes O(n) time. After this we pick a variable xi appearing in a 2-clause and fix to
value vi. We have the following cases:

1. This may create other clauses with 1 variable, which may then be fixed. Suppose the number
of clauses remaining is m′ (m′ ≤ m). If this did not create an empty clause, the algorithm will
proceed with m′.
An important observation is that the formula ϕ′ formed by these m′ clauses is a subformula of ϕ.
Since we have already satisfied all clauses in ϕ that are not in ϕ′, ϕ is satisfiable if and only if ϕ′

is satisfiable. Hence, we can simply proceed with ϕ′ and will never need to backtrack to change
the value of xi.

2. If we derive an empty clause by fixing xi = vi, we know that that xi should be set to v̄i. If setting
xi = v̄i does not derive the empty clause, we again get a subformula ϕ′ and the previous argument
applies.

3. If both xi = vi and xi = v̄i lead to the empty clause, the formula is unsatisfiable and we stop.

Notice that when we choose a value for a variable, either we derive an empty clause immediately (after
fixing variables in the 1-clauses thus created) in time O(n), or we simply carry on with the subformula
derived and never backtrack. In the worst case, we derive an empty clause for one value of each variable
and carry on with the other value. Hence the maximum time is n ∗O(n) = O(n2).

9.2 a) A subproblem is a new instance of the RUDRATA PATH on a subgraph of the original graph, starting
at a given vertex v ∈ V . This allows us to progressively construct a path by removing vertices which
have already been visited.

b) choose can be implemented by picking the subproblem defined on the smaller graph. This is
reasonable as smaller graphs will be evaluated faster. Moreover, this will reduce the space complexity
of the algorithm, as a single active path must be kept in the tree of possible Rudrata paths.

c) To expand a subproblem P defined as RUDRATA PATH starting at s on a graph G, break it down
into subproblems P1, ..., PdegG(s), where the ith subproblem is an instance of RUDRATA PATH on G− s
starting at the ith neighbor of s in G.

9.3 a) A suproblem is a new instance of SET COVER in which the set of elements is a subset of the original
set of elements, and the collection of sets is a subset of the original collection of sets.

b) choose can be implemented by picking the subproblem with the least number of elements.

c) expand a subproblem by considering all subproblems obtained by letting one set S into the cover.
Then, each subproblem will consists of all the elements not in S and all the original sets except S.

d) Many lowerbound techniques exist. A simple way to bound the cost of a subproblem is to consider
the ratio between the number of elements and the cardinality of the smallest set. More accurate ways
would be to use the greedy algorithm described in Chapter 5. If such algorithm produces a solution of
cost ALG on the subproblem, then, by the analysis in the book, the optimal cost for the subproblem
must be at least ALG

log n , where n is the number of elements in the subproblem.

9.4 Initially, let G be the original graph and I = ∅. Repeat the process below until G = ∅.
Pick the node v with the smallest degree and let I = I ∪ {v}.
Delete v and all its neighbors from the graph.
Let G be the new graph.

Notice that I is an independent set by construction. At each step, I grows by one vertex and we
delete at most d + 1 vertices from the graph (since v has at most d neighbors). Hence there are at
least |V |/(d + 1) iterations. Let K be the size of the maximum independent set. Then the previous
argument implies that

|I| ≥ |V |
d + 1

≥ K

d + 1

3

9.5 a) Let e be an edge present in T ′ but not in T . This creates a unique cycle. Also, this cycle must
contain at least one edge e′ which is not in T ′ (all the edges in the cycle cannot be from T ′ since
T ′ is a tree!). Swapping (e, e′) gives a tree T1 which has one more edge from T ′ as compared to
T . We can continue this procedure, until we replace all the edges in T ′. Since we always remove
edges not in T ′, and T ′ has |V | − 1 edges, this takes at most |V | − 1 swaps.

(b) Given T and T ′, we include an edge e = (u, v) from T ′ which is not present in T . This creates a
cycle. Now we obtain T1 by removing one edge from this cycle. However, we need to argue that
there exists at least one edge in the cycle which has at least as much weight as e, so that cost(T1)
≥ cost(T0).
To argue this, consider a cut which separates u and v. Then edge (u, v) goes across this cut. Since
u and v are on opposite sides of the cut, and the other edges of the cycle form a path between
u and v, at least one more edge e′ from the cycle must cross the cut. Also, since an edge in the
MST must be the lightest edge across a cut separating its endpoints, w(e′) > w(e). Thus, we can
remove e′. Continuing this argument gives the desired sequence.

(c) We will now strengthen the previous argument to say that if T is not an MST, then there must
be an edge e in an MST T ′ and an edge e′ in T , such that swapping (e, e′) strictly reduces the
cost. Suppose for every edge e in the MST, all the edges in the cycle produced by including e have
weight greater than or equal to e. Then by the previous argument, T contains the lightest edge
across every cut, and hence must be an MST. Since we assumed T is not an MST, there must be
a cost-reducing swap. This proves that there are no local minima and our algorithm always finds
an MST.
To bound the running time, note that after each swap, one edge in the tree is swapped with a
lower weight edge. Consider an edge e in the tree. This may be swapped with some edge e1, e1

with e2 and so on. Since the weights must decrease in this sequence, the length of sequence is
at most |E|. Also, the tree has |V | − 1 edges to begin with. Hence the total number of swaps is
O(|V ||E|). Also, at each iteration, all possible swaps can be checked in O(|V ||E|) time (why?).
Hence the total running time is at most O(|V |2|E|2).

9.6 Let T be the minimum Steiner tree having cost C. Then we can follow the shape of the Steiner tree
to obtain a tour of cost 2C which passes through all the vertices in the Steiner tree. Let i, j, k be
adjacent vertices in the path. Using the triangle inequality, we know that dik ≤ dij + djk. Hence, we
can “bypass” an intermediate vertex j and connect i and k directly if we want, without increasing the
cost.

Using this trick, we can bypass all the vertices not in V ′ that are present in the path, and also the
vertices of V ′ which are being visited twice. This gives a path of cost at most 2C, which passes though
all the vertices of V ′ exactly once. Hence, this path is a spanning tree for V ′ of cost 2C. This implies
cost(MST) ≤ 2C, thus giving the desired approximation guarentee.

9.7 a) This is the same problem as finding a (s1, s2)min-cut, which can be done by a maximum flow
computation in polynomial time.

b) Find a (s1, s2)mincut E1 ⊆ E using maximum flow. Suppose s1 and s3 fall on the same side of the
cut (the other case is symmetric). Compute then a (s1, s3)mincut E2 ⊆ E and output E1 ∪ E2.
To see this is a 2-approximation, consider the optimal multiway cut E∗: because E∗ is both a
(s1, s2)cut and a (s1, s3) cut, we have |E1| ≤ E∗ and |E2| ≤ E∗. Hence, |E1 ∪E2| ≤ |E1|+ |E2| ≤
2|E∗|, as required.

c) We need to define a neighborhood structure on the subsets of E whose removal disconnects the
input terminals. The most natural choice is to have two subsets be neighbors if the size of their
symmetric difference is less than some fixed number t. Notice that the size of each neighborhood
is at most |E|t.

9.8 a) Given a formula ϕ with m clauses as an instance of SAT, it is satisfiable if and only if the maximum
number of satisfiable clauses is exactly m. Hence, an algorithm for MAX-SAT easily gives one for
SAT.

4

b) Let Xj be a random variable obtaining value 1 if the j th clause is satisfied and 0 otherwise.
Xj gets a value 0 only when all the literals appearing in the clause are simultaneously false in a
random assignment, which happens only with probability 1

2kj
where kj is the number literals in

the clause. Hence, E[Xj] = 1− 1

2kj
≥ 1/2. If X is the number of satisfied clauses in the formula,

then X =
∑m

j=1 Xj and we have by linearity of expectation

E[X] =
m∑

j=1

E[Xj] =
m∑

j=1

(
1− 1

2kj

)
≥ m

2

If all clauses contain exactly k literals, then E[X] = m
(
1− 1

2k

)
, which gives an approximation

factor of at least 1/
(
1− 1

2k

)
= 1 + 1/(2k − 1).

c) Let Ni denote the number of clauses containing at least one of the variables x1, . . . , xi. We claim
that after i variables have been assigned, the number of satisfied clauses is greater than Ni/2. The
statement is true for x1 by definition of the algorithm. When assigning xi, we satisfy more than
half of all the currently unsatisfied clauses containing xi, which is more than Ni −Ni−1. Hence,
this algorithm satisfies more than half the total number of clauses, achieving an approximation
ratio of at least 2.

9.9 a) We first show that any solution S that the algorithm outputs must have the property that w(S) ≥
1
2

∑
e∈E w(e). Since the size of the maximum cut can at most be

∑
e ∈ Ew(e), this guarantees

an approximation ratio of 2.
For contradiction suppose that w(S) < 1

2

∑
e∈E w(e). For each vertex v ∈ V , define c(v) as the

total weight of edges incident on v that cross the cut and w(v) as the sum of weights of all the
edges incident to v. Then ∑

v∈V

c(v) = 2w(S) <
∑
e∈E

w(e) =
1
2

∑
v∈V

w(v)

since we count each edge twice, once for each of its endpoints. Thus, there must be at least one
vertex v such that c(v) < 1

2w(v). If v ∈ S, define S′ as S\{v}, else define S′ as S ∪ {v}. All the
edges incident to v that were not crossing the cut, will now cross the cut (adding w(v) − c(v)),
but the ones that were crossing earlier may not (removing c(v)),hence

w(S′) ≥ w(S)− c(v) + (w(v)− c(v)) = w(S) + w(v)− 2c(v) > w(S)

Hence, there exists an S′, which differs from S only by one element and w(S′) > w(S). This
means that the algorithm could not have stopped at S, which is a contradiction.

b) At each iteration, we take O(n) time to find if an S′ exists with the required properties. Also,
at each step the value of the cut increases and hence the total number of iterations is at most
O(

∑
e∈E w(e)). Thus the running time is O(n

∑
e∈E w(e)). This is polynomial in the special case

when all the edge weights are 1, but not in general.

9.10

