
Chapter 8 - Solutions

2

8.1 Assume that TSP (G, b) returns false if no tour of length b or less exists in G. Then the following
functions solve TSP −OPT using TSP .

TSP-OPT(G)
S = 0
for all u ∈ V , v ∈ V :

S = S + dist(u, v)
return BINARY-SEARCH-TOUR(G, 0, S)

BINARY-SEARCH-TOUR(G, l, u)
b = (l + u)/2
if TSP(G, b) 6= false

return BINARY-SEARCH-TOUR(G, l, b)
else return BINARY-SEARCH-TOUR(G, b, u)

Basically, the algorithm just does a binary search over all possible lengths of the optimal tour, going
from 0 to the sum of all distances. Note that binary search is necessary here and we can’t just increment
the value of b by 1 each time since the sum of all distances is exponential in the size of the input.

8.2 We impose an arbitrary ordering on the edges and remove the edges one by one. If the graph obtained
by removing an edge from the current graph still has a Rudrata path, we remove e permanently and
update the current graph. If the new graph does not have a Rudrata path, we add e back. Hence,
we maintain the invariant that the graph we have always has a Rudrata path (if the given graph did).
Since it is possible to remove all edges except a single Rudrata path, we will be left a Rudrata path in
the end.

8.3 It’s a generalization of SAT. Given a SAT formula ϕ with n variables, (ϕ, n) is an instance of STINGY
SAT which has a solution if and only if the original SAT formula has a satisfying assignment.

8.4 (a) Given a clique in the graph, it is easy to verify in polynomial time that there is an edge between
every pair of vertices. Hence a solution to CLIQUE-3 can be checked in polynomial time.

(b) The reduction is in the wrong direction. We must reduce CLIQUE to CLIQUE-3, if we intend to
show that CLIQUE-3 is at least as hard as CLIQUE.

(c) The statement “a subset C ⊆ V is a vertex cover in G is and only if the complimentary set V −C
is a clique in G” used in the reduction is false. C is a vertex cover if and only if V − C is an
independent set in G.

(d) The largest clique in the graph can be of size at most 4, since every vertex in a clique of size k
must have degree at least k − 1. Thus, there is no solution for k > 4, and for k ≤ 4 we can check
every k-tuple of vertices, which takes O(|V |k) = O(|V |4) time.

8.5 3D-MATCHING to SAT
We have a variable xbgp for each given triple (b, g, p). We interpret xbgp = true as choosing the triple
(b, g, p). Suppose for boy b, (b, g1, p1), . . . , (b, gk, pk) are triples involving him. Then we add the clause
(xbg1p1 ∨ . . . ∨ xbgkpk

) so that at least one of the triples is chosen. Similarly for the triples involving
each girl or pet. Also, for each pair of triples involving a common boy, girl or pet, say (b1, g, p1) and
(b2, g, p2), we add a clause of the form (x̄b1gp1 ∨ x̄b1gp1) so that at most one of the triples is chosen.

The total number of triples, and hence the number of variables, is at most n3. The first type of clauses
involve at most n2 variables and we add 3n such clauses, one for each boy, girl or pet. The second
type of clauses involve triples sharing one common element. There are 3n ways to choose the common
element and at most n4 to choose the rest, giving at most 3n5 clauses. Hence, the size of the new
formula is polynomial in the size of the input.

If there is a matching, then it must involve n triples (b1, g1, p1), . . . , (bn, gn, pn). Setting the variables
xb1g1p1 , . . . , xbngnpn to true and the rest to false gives a satisfying assignment to the above formula.
Similarly, choosing only the triples corresponding to the true variables in any satisfying assignment
must correspond to a matching for the reasons mentioned above. Hence, the formula is satisfiable if

3

and only if the given instance has a 3D matching.

RUDRATA CYCLE to SAT
We introduce variables xij for 1 ≤ i, j ≤ n meaning that the ith vertex is at the jth position in the
Rudrata cycle. Each vertex must appear at some position in the cycle. Thus, for every vertex i, we
add the clause xi1 ∨ xi2 ∨ . . . ∨ xin

. This adds n clauses with n variables each.

Also, if the ith vertex appears at the jth position, then the vertex at (j + 1)th position must be a
neighbor of i. In other words, if u, v are not neighbors, then either u appears at the jth position, or v
appears at the (j + 1)th position, but not both. Thus for every (u, v) /∈ E and for all 1 ≤ j ≤ n, add
the clause (x̄uj ∨ (x̄v(j+1)). This adds at most O(n2)× n = O(n3) clauses with 2 variables each.

Using the “meanings” of the clauses given above, it is easy to see that every satisfying assignment gives
a Rudrata cycle and vice-versa.

8.6 a) Let the number of variables be n and the number of clauses be m. Note that each variable x can
satisfy at most 1 clause (because it appears as x and x̄ at most once). We construct a bipartite
graph, with the variables on the left side and the clauses on the right. Connect each variable to
the clauses it appears in. For the formula to be satisfiable, each clause must pick one (at least)
variable it is connected to with each variable being picked by at most one of the clauses it is
connected to. If we connect all the variables to a source s, all clauses to a sink t and fix the
capacity of all edges as 1, this is equivalent to asking if we can send a flow of m units from s to
t. Since the flow problem can be solved in polynomial time, so can the satisfiability problem.

b) Consider the reduction from 3SAT to INDEPENDENT SET. If each literal is allowed to appear
at most twice, we claim that the graph we create in this reduction has degree at most 4 for each
vertex. Let (x1 ∨ x2 ∨ x3) be a clause in the original formula. Then, in the graph, the vertex
corresponding to x1 in this clause, has one edge each to x2 and x3. Also, it has edges to all
occurrences of x̄1. But, since x̄1 is allowed to appear at most twice, this can add at most two
edges. Similarly, each vertex in the graph has at most 4 edges incident to it.
However, we know that the special case of 3SAT, with each literal occurring at most twice is
NP-complete. The above argument shows that this special case reduces to the special case of
INDEPENDENT SET, with each vertex having degree at most 4. Hence, this special case of
INDEPENDENT SET must also be NP-complete.

8.7 Consider a bipartite graph with clauses on the left and variables on the right. Consider any subset S
of clauses (left vertices). This has exactly 3|S| edges going out of it, since each clause has exactly 3
literals. Since each variable on the right has at most 3 edges coming into it, S must be connected to
at least |S| variables on the right. Hence, this graph has a matching using Hall’s theorem proved in
problem 7.30.

This means we can match every clause with a unique variable which appears in that clause. For every
clause, we set the matched variable appropriately to make the clause true, and set the other variables
arbitrarily. This gives a satisfying assignment. Since a matching can be found in polynomial time
(using flow), we can construct the assignment in polynomial time.

8.8 We start from 3SAT and reduce it to an instance of EXACT 4SAT. We can assume that 3SAT formula
has no clauses with one variable, since those variables can directly be assigned. Let C2 = (l1 ∨ l2)
and C3 = (l3 ∨ l4 ∨ l5) be two clauses having 2 and 3 literals respectively. We can write them as the
following equivalent groups of clauses with exactly 4 literals - we need to add one new variable for C3

and two new ones for C2.
C ′

3 ≡ (x ∨ l3 ∨ l4 ∨ l5) ∧ (x̄ ∨ l3 ∨ l4 ∨ l5)

C ′
2 ≡ (y ∨ z ∨ l1 ∨ l2) ∧ (ȳ ∨ z ∨ l1 ∨ l2) ∧ (y ∨ z̄ ∨ l1 ∨ l2) ∧ (ȳ ∨ z̄ ∨ l1 ∨ l2)

Any assignment satisfying C ′
3 must assign either true or false to x, making one of the clauses true -

in which case the other clause becomes exactly C3. A similar argument holds for C ′
2.

4

8.9 This is a generalization of VERTEX-COVER. Given a graph G, consider each edge e = (u, v) as a set
containing the elements u and v. Then, finding a hitting set of size at most b in this particular family
of sets is the same as finding a vertex cover of size at most b for the given graph.

8.10 a) We can view this as a generalization of the CLIQUE problem. Given an input (G, k) for CLIQUE,
let H be a graph consisting of k vertices with every pair connected by an edge (i.e. a clique of
size k). Then G contains a clique of size k if and only if H is a subgraph of G.

b) This is a generalization of RUDRATA-PATH. Given a graph G with n vertices, let g = n − 1.
Then (G, n− 1) is an instance of LONGEST PATH. However, a simple path of length n− 1 must
contain n vertices and hence must be a Rudrata path. Also, any Rudrata path is of length n− 1.
Hence for any graph with n vertices, LONGEST-PATH(G, n − 1) is precisely the asking for the
Rudrata path.

c) Given a formula φ with m clauses, setting g = m gives SAT as a special case of MAX-SAT.

d) This also a generalization of CLIQUE. Given an instance (G, k) let a = k, b = k(k − 1)/2. Any
subgraph of G with k vertices and containing k(k− 1)/2 edges, must have an edge between every
possible pair out of these k vertices and hence must be a clique. Similarly, a clique on k vertices
must contain k(k − 1)/2 edges.

e) This is a generalization of INDEPENDENT SET. Given (G, k), an instance for independent set,
let a = k, b = 0. Then (G, a, b) is an instance for SPARSE SUBGRAPH. Also, any subgraph of
G with k vertices and 0 edges must be an independent set of size k and vice-versa.

f) Generalizes VERTEX COVER. Consider each vertex as a set of the edges incident upon it. Then
a SET COVER of this family of sets corresponds exactly to picking vertices (sets) such that at
least one vertex corresponding to each edge is picked (i.e. at least one set containing every element
is picked).

g) Generalizes Rudrata cycle. Given a graph G = (V,E), take b = n and dij = 1 ∀(i, j) ∈ E and
dij = 2 otherwise. Also, take rij = 2 for every (i, j).
Then this is an instance of the RELIABLE NETWORK problem which corresponds to picking
few edges such that the sum of the weights of all the edges is n and between every points i and
j, there must be 2 vertex-disjoint paths i.e. they should be part of a cycle. Also, since every
pair must have two paths between them, the graph must be connected. Finally, because of the
weights, the graph can have at most n edges. Hence, it must have exactly n edges and exactly
one cycle (since a connected graph with n edges can have only 1 cycle), which contains all the
vertices. This is exactly the Rudrata cycle. It is also easy to see that every Rudrata cycle satisfies
the properties for the above RELIABLE NETWORK instance.

8.11 (a) Given a graph G = (V,E) as an instance of the DIRECTED RUDRATA PATH problem, we
construct an instance of undirected RUDRATA PATH which consists of three copies of |V |,
denoted by vertex sets Vin, Vmid and Vout. Let the new graph be G′ = (Vtop ∪ Vmid ∪ Vbot, E

′).
We have {uout, vin} ∈ E′ (an undirected edge) for every (u, v) ∈ E. Also, {vin, vmid}, {vmid, vout} ∈
E′ for all v ∈ V . Hence, the only way to include vmid in a path is to pass from vtop to vbot or
vice-versa.

u u u v v vin mid out in mid out

a

a

b

b

1

2

1

2

5

Finally, to ensure that paths start in Vin and end at Vout, we add four vertices a1, a2 and b1, b2

and edges {a1, a2}, {b1, b2} and {a2, vin}, {vout, b2}∀v ∈ V . Since a1 and b1 have degree 1, they
must be the end points of any Rudrata path.
A Rudrata path starting from a1 must visit a2 and then some vertex in Vin. Similarly, a
path ending at b1 must come through Vout. To cover Vmid, the path must be of the form
a1, a2, v

(1)
in , v

(1)
mid, v

(1)
out, . . . , v

(1)
in , v

(1)
mid, v

(1)
out, b2, b1. Then v(1), ldots, v(n) gives a directed Rudrata

path. Similarly, an undirected Rudrata path in G′ can be constructed from a directed Rudrata
path in G.

(b) We use the same construction of G′ as in the previous part. It is also a valid instance of the
undirected Rudrata (s, t)-path problem with s = a1 and t = b1. Since all paths we obtained above
were always of this form, the same argument still works.

8.12 a) To show that k-SPANNING TREE is a search problem, we need to show that it is possible to
verify a solution in polynomial time. Given a spanning tree T for a graph G we need to verify
that it is indeed a tree, that each edge in T is present in G and that all vertices of G are present
in T and have degree k. All this can be done by a single DFS on T , comparing each edge with
the corresponding edge in G, which takes polynomial time in total.

b) Consider the 2-SPANNING TREE problem. We are required to find a tree with each vertex
having degree at most 2. However, such a tree must be a path, since creating a branch at any
vertex makes the degree of that vertex as 3. Also, if the tree spans the graph it must be a an
undirected Rudrata path. Hence, this problem is same as the undirected Rudrata path problem
which we showed to be NP-complete in Problem 8.11.
We now reduce k-SPANNING TREE for k > 2, to the 2-SPANNING TREE problem. Given a
graph G = (V,E), at each vertex v ∈ V , we add k − 2 “buffer vertices” v1, . . . , vk−2 connected
only to v. We add a fresh set of buffer vertices for each original vertex in the graph. Call this
new graph G′. It is easy to see that a k-spanning tree of G′ must contain all the buffer vertices
as leaves, since they all have degree 1. Removing, these gives a 2-spanning tree of G. Similarly,
adding k − 2 “buffer leaves” to each vertex in any 2-spanning tree of G, will give a k-spanning
tree of G′. Hence, the k-SPANNING TREE problem is NP-Complete for every k ≥ 2.

8.13 (a) This can be solved in polynomial time. Delete all the vertices in the set L from the given graph
and find a spanning tree of the remaining graph. Now, for each vertex l ∈ L, add it to any of its
neighbor present in the tree. It is clear that such a tree, if it is possible to construct one, must
have all the vertices in L as leaves. If the graph becomes unconnected after removing L, or some
vertex in L has no neighbors in G\L, then no spanning tree exists having all vertices in L as
leaves.

(b) This generalizes the (undirected) (s, t)-RUDRATA PATH problem. Given a graph G and two
vertices s and t, we set L = {s, t}. We now claim that the tree must be a path between s and t. It
cannot branch out anywhere, because each branch must end at a leaf and there are no other leaves
available. Also, since it is a spanning tree, the path must include all the vertices of the graph and
hence must be Rudrata path. Similarly, every Rudrata path is a tree of the type required above.

(c) This is also a generalization of (undirected) (s, t)-RUDRATA PATH. We use the same reduction
as in the previous part. Note that a tree must have at least two leaves. Hence for L = {s, t}, the
set of leaves must be exactly equal to L.

(d) Again, setting k = 2, gives exactly the (undirected) Rudrata path problem, since a spanning tree
with at most two leaves must be a path containing all the vertices. Also, it will have exactly two
leaves (since that’s the minimum a tree can have).

(e) The solution to this problem uses the reduction from problem 8.20. We first note that in the
reduction from VERTEX COVER to DOMINATING SET, if we add edges (u, v) for all vertices
u, v ∈ V of the given graph, the dominating set we obtain is necessarily connected. Hence the
reduction also gives the hardness of the problem of finding a connected dominating set of size less
than or equal to k. However, a graph has a connected dominating set of size at most k if and

6

only if it has a spanning tree with |V | − k or more leaves (since the graph obtained by removing
the leaves is exactly a connected dominating set). Hence, the given problem is NP-hard.

(f) Same as the part d), setting k = 2 gives the Rudrata path problem.

8.14 We can reduce CLIQUE to the given problem. Given an instance (G, k) of CLIQUE with n vertices,
we create G′, which is G together with another n vertices, but without any extra edges. The extra
vertices trivially provide an independent set of size k ≤ n for any k. Hence, G has a clique of size k
if and only if G′ has a clique as well as an independent set of size k, since the extra vertices have no
edges between them.

8.15 This is a generalization of CLIQUE. Given (G, k) as an instance of CLIQUE with n vertices, take
G1 = G, b = k and G2 as a clique of size n. Then (G1, G2, b) has a solution if and only if G has a
clique of size at least k.

8.16 This is a generalization of INDEPENDENT SET. Let D be the adjacency matrix of an undirected graph
(i.e. penalty is 1 if two vertices are neighbors and 0 otherwise) and let p = 0. Then the maximum
number of ingredients (vertices) that can be chosen is exactly the size of the maximum independent
set. Hence, EXPERIMENTAL CUISINE is NP-Complete which means there must be a polynomial
time reduction from 3SAT to EXPERIMENTAL CUISINE.

8.17 Since the problem Π is in NP, there must be an algorithm which verifies that a given solution is correct
in polynomial time, say bounded by a polynomial q(n). Since the algorithm reads the given solution,
the size of the solution can be at most q(n) bits. Hence, we run the algorithm on all 2q(n) binary strings
of length q(n). If the given instance has any solution, then one of these inputs must be a solution. The
running time is O(q(n)2q(n)) = O(2n2q(n)) = O(2q(n)+n). Taking p(n) = n + q(n), we are done.

8.18 Since FACTORING is in NP (we can check a factorization in polynomial time), P = NP would
mean the factors of a number can be found in polynomial time. Since in RSA, we know (N, e) as the
public key, we can factor N to find p and q and in polynomial time. We can then compute d = e−1

mod (p − 1)(q − 1) using Euclid’s algorithm. If X is the encrypted message, then Xe mod N gives
the original message.

8.19 We give a reduction from CLIQUE to KITE. Given an instance (G, k) of CLIQUE, we add a tail of k
new vertices to every vertex of G to obtain a new graph G′. Since the added tails are just paths and
cannot contribute to a clique, G′ has a kite with 2k nodes if and only if G has a clique of size k.

8.20 We reduce VERTEX-COVER to DOMINATING-SET. Given a graph G = (V,E) and a number k as
an instance of VERTEX-COVER, we convert it to an instance of DOMINATING-SET as follows. For
each edge e = (u, v) in the graph G, we add a vertex auv and the edges (u, auv) and (v, auv). Thus we
create a “triangle” on each edge of G. Call this new graph G′ = (V ′, E′).

We now claim that a G′ has a dominating set of size at most k if and only if G has a vertex cover of
size at most k. It is easy to see that vertex cover for G is also a dominating set for G′ and hence one
direction is trivial.

For the other direction, consider a dominating set D ⊆ V ′ for G′. For each triangle (u, v, auv) (corre-
sponding to edge (u, v)), at least one of the three vertices must be in D, since the only neighbors of auv

are u and v. Since we can exchange auv with u or v, still maintaining a dominating set, we can assume
that none of the added vertices (auvs) is in D. Since D must then contain at least one endpoint for
every edge, it is also a vertex cover.

8.21 (a) Constructing a digraph as in the hint, a Rudrata path exactly corresponds to a sequence of k-mers
such that the last k − 1 characters of each element match the first k − 1 characters of the next
element. This is just the reconstructed sequence.

(b) Let S be the set (not multiset) of all the strings formed by the first k − 1 characters and all
strings formed by the last k − 1 characters of all the given k-mers. Construct a directed graph
with V = S, with an edge (u, v) ∈ E if there exists a k-mer having u as the k − 1 characters and
v as the last k − 1 characters. It is easy to see that each k-mer corresponds to exactly one edge.
An Euler path in this graph gives a sequence of elements as the Rudrata path above.

7

8.22 (a) Given a graph and a feedback arc set, it is easy to check that the size of the set is at most b and
that the graph produced by removing the edges in the set is acyclic (through DFS). Hence, the
problem is in NP.

(b) We claim that if U ⊆ V is a vertex cover for G, then F = {(wi, w
′
i)|vi ∈ U} is a feedback arc set

(of the same size) for G′.
To prove this, first note that G′ is a bipartite graph with (say) w1, . . . wn on the left and w′

1, . . . , w
′
n

on the right. Now, any cycle must involve some edge, say (w′
i, wj) from right to left. However,

the only incoming edge into w′
i is (wi, w

′
i) and the only outgoing edge from wj is (wj , w

′
j) and

hence both of these must be in the cycle. Also, since (w′
i, wj) is an edge, (vi, vj) ∈ E and either

vi or vj must be in U which means F ∩ {(wi, w
′
i), (wj , w

′
j)} 6= ∅. Hence, removing the edges in F

breaks this cycle.

(c) We replace all the edges of the form (w′
i, wj) in the given feedback arc set, say F , by edges of

the form (wk, w′
k). By the argument in the previous part, any cycle containing (w′

i, wj) must
also contain (wi, w

′
i) and (wj , w

′
j) and hence F\{(w′

i, wj)} ∪ {(wi, w
′
i)} is also a feedback arc set.

Continuing in this manner, we never increase the size of the set (but might decrease it we include
the same edge, say (wi, w

′
i) for two removed edges (w′

i, wj) and (w′
i, wk)), we get a feedback arc

set F ′ such that |F ′| ≤ b.
We now claim that U = {vi|(wi, w

′
i) ∈ F ′} must be a vertex cover for G. If not, then there must

be an edge (vj , vk) such that vj , vk /∈ U and hence (wj , w
′
j), (wk, w′

k) /∈ F ′. But then wj → w′
j →

wk → w′
k → wj would be a cycle in G′ even after removing F ′, which is a contradiction.

8.23 For a given 3SAT formula with n variables and m clauses, we create a graph with m + n source
sink pairs - one for each variable and one for each clause. For each clause c of the form (l1∨ l2∨ l3),
we create 6 new vertices l1, l2, l3, l̄1, l̄2 and l̄3.
We add the edges (sc, li), (li, tc) for i = 1, 2, 3 so that the only paths connecting this source-sink
pair are the ones that pass through at least one of the literals (not its complement) in the clause.
Think of this as making the literal “true”. Also, for all variables x, we connect the occurrences
of x in all the clauses in a path and connect its endpoints to sx and tx. We also do this for all
the occurrences of x̄. A path from sx to tx must contain either all the occurrences of x or all the
occurrences of x̄.
Given node disjoint paths, we now construct a satisfying assignment. If for variable x, the solution
has the path containing all occurrences of x, we assign x = false (and x = true otherwise).
Thus, for a path from sx to tx we set all the literals in the path to false. Since each clause c
must have a path from sc to tc containing a literal appearing in the clause, which has not been
set to false, the clause must be satisfied. By the same argument, we can also construct a set of
paths from a satisfying assignment.

