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6.1. Subproblems: Define an array of subproblems D(i) for 0 ≤ i ≤ n. D(i) will be the largest sum of a
(possibly empty) contiguous subsequence ending exactly at position i.

Algorithm and Recursion: The algorithm will initialize D(0) = 0 and update the D(i)’s in ascending
order according to the rule:

D(i) = max{0,D(i − 1) + ai}

The largest sum is then given by the maximum element D(i)∗ in the array D. The contiguous subse-
quence of maximum sum will terminate at i∗. Its beginning will be at the first index j ≤ i∗ such that
D(j − 1) = 0, as this implies that extending the sequence before j will only decrease its sum.

Correctness: The contiguous subsequence of largest sum ending at i will either be empty or contain
ai. In the first case, the value of the sum will be 0. In the second case, it will be the sum of ai and the
best sum we can get ending at i − 1, i.e. D(i − 1) + ai. Because we are looking for the largest sum,
D(i) will be the maximum of these two possibilities.

Running Time: The running time for this algorithm is O(n), as we have n subproblems and the solution
of each can be computed in constant time. Moreover, the identification of the optimal subsequence
only requires a single O(n) time pass through the array D.

6.2. Subproblems: Define subproblem D(i) for 0 ≤ i ≤ n to be the minimum total penalty to get to hotel i.

Algorithm and Recursion: The algorithm will initialize D(0) = 0 and compute the remaining D(i) in
ascending order using the recursion:

D(i) = min
0≤j<i

{(200 − aj)
2 + D(j)}

To recover the optimal itinerary, we can keep track of a maximizing j for each D(i) and use this
information to backtrack from D(n).

Correctness: To solve D(i) we consider all possible hotels j we can stay at on the night before reaching
hotel i: for each of these possibilities, the minimum penalty to reach i is the sum of the cost of a
one-day trip from j to i and the minimum penalty necessary to reach j. Because we are interested in
the minimum penalty to reach i, we take the minimum of these values over all j’s.

Running Time: The running time is O(n2), as we have n subproblems and each takes time O(n) to
solve, as we need to compute the minimum of O(n) values. Moreover, backtracking only takes time
O(n).

6.3. Subproblems: Define subproblem D(i) to be the maximum profit which Yuckdonald’s can obtain from
locations 1 to i.

Algorithm and Recursion: The algorithm will initialize D(0) = 0, and use the following rule to solve
the other subproblems:

D(i) = max{D(i − 1), pi + D(i∗)}

where i∗ is the largest index j such that mj ≤ mi − k, i.e. the first location preceding i and at least k
miles apart from it.

Correctness: Note that, if location i is not used, the maximum profit D(i) must equal D(i − 1).
Otherwise, if location i is used, the best we can hope for is the sum of pi and the maximum profit from
the remaining locations we are still allowed to open before i, i.e. D(i∗).

Running Time: This algorithm solves n subproblems; each subproblem requires finding an index i∗,
which can be done in time O(log n) by binary search on the ordered list of locations, and computing
a maximum of two values, which can be done in constant time. Hence, the running time is O(n log n).
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6.4. a) Subproblems: Define an array of subproblems S(i) for 0 ≤ i ≤ n where S(i) is 1 if s[1 · · · i] is a
sequence of valid words and is 0 otherwise.

Algorithm and Recursion: It is sufficient to initialize S(0) = 1 and update the values S(i) in
ascending order according to the recursion

S(i) = max
0≤j<i

{S(j) : dict(s[j + 1 · · · i]) = true}

Then, the string s can be reconstructed as a sequence of valid words if and only if S(n) = 1.

Correctness and Running Time: Consider s[1 · · · i]. If it is a sequence of valid words, there is a
last word s[j · · · i], which is valid, and such that S(j) = 1 and the update will cause S(i) to be set
to 1. Otherwise, for any valid word S[j · · · i], S(j) must be 0 and S(i) will also be set to 0. This
runs in time O(n2) as there are n subproblems, each of which takes time O(n) to be updated with
the solution obtained from smaller subproblems.

b) Every time a S(i) is updated to 1 keep track of the previous item S(j) which caused the update
of S(i) because s[j + 1 · · · i] was a valid word. At termination, if S(n) = 1, trace back the series
of updates to recover the partition in words. This only adds a constant amount of work at each
subproblem and a O(n) time pass over the array at the end. Hence, the running time remains
O(n2).

6.5. a) There are 8 possible patterns: the empty pattern, the 4 patterns which each have exactly one
pebble, and the 3 patterns that have exactly two pebbles (on the first and fourth squares, the
first and third squares, and the second and fourth squares).

b) Number the 8 patterns 1 through 8, and define S ⊆ {1, 2, . . . , 8}×{1, 2, . . . , 8} to be all (a, b) such
that pattern a is compatible with pattern b. For each pattern, there are a constant number of
patterns that are compatible (for example, every pattern is compatible with the empty pattern).

Sub-problems and Recursion: We consider the sub-problem L[i, j], i = 0, 1, 2, . . . , n and j ∈
{1, 2, . . . , 8} to be the maximal value achievable by pebbling columns 1, 2, . . . , i such that the final
column has pattern j. It is easy to see that:

L[i + 1, j] = max
(k,j)∈S

L[i, k]

The base case is L[0, j] = 0 for all j. In order to recover the optimal placement, we should also
maintain a back-pointer: P [i + 1, j] is the value of k such that (k, j) ∈ S and L[i, k] is maximal.

Algorithm and Running Time: For i = 0, 1, . . . , n, for j = 1, 2, . . . , 8, compute L[i, j] and P [i, j]
using the recurrence. Note that L[i, j] and P [i, j] can be computed using the recursion in constant
time since we only need to check a constant number of possible k. The value of the optimal
placement is given by maxj L[n, j].

To recover the optimal placement, let j∗ be the value of j for which L[n, j] is maximal. Then,
column n should be pebbled using pattern j∗. Then, column n−1 should be pebbled using pattern
P [n, j∗], column n − 2 with pattern P [n − 1, P [n, j∗]], and so on.

The running time of this algorithm is O(n) because compute the recurrence takes O(n) time and
backtracking takes O(1) time per column.

6.6. Subproblems: Let x1 · · ·xn be the factors of the product in the order they appear. We define C(i, j) to
be the set of all possible values of the substring x[i, · · · , j] under all possible different parenthesizations.

Algorithm and Recursion: We can compute C(i, i+s) by considering all positions j where we can break
the expression into two products:

C(i, i + s) =
⋃

i≤j<i+s

{xy : x ∈ C(i, j), y ∈ C(j + 1, i + s)}
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We can then recursively construct all C(i, i + s) in increasing order of s.

Correctness and Running Time: The assignment to C(i, i+s) is correct as it considers all possible ways
of splitting xi · · ·xi+s after xj into two parenthesized expressions. The running time of the algorithm
is O(n3) as there are O(n2) subproblems and each takes time O(n).

6.7. Subproblems: Define variables L(i, j) for all 1 ≤ i ≤ j ≤ n so that, in the course of the algorithm, each
L(i, j) is assigned the length of the longest palindromic subsequence of string x[i, · · · , j].

Algorithm and Recursion: The recursion will then be:

L(i, j) = max {L(i + 1, j), L(i, j − 1), L(i + 1, j − 1) + equal(xi, xj)}

where equal(a, b) is 1 if a and b are the same character and is 0 otherwise, The initialization is the
following:

∀i, 1 ≤ i ≤ n , L(i, i) = 0

∀i, 1 ≤ i ≤ n − 1 , L(i, i + 1) = equal(xi, xi + 1)

Correctness and Running Time: Consider the longest palindromic subsequence s of x[i, · · · , j] and
focus on the elements xi and xj . There are then three possible cases:

– If both xi and xj are in s then they must be equal and L(i, j) = L(i + 1, j − 1) + equal(xi, xj)

– If xi is not a part of s, then L(i, j) = L(i + 1, j).

– If xj is not a part of s, then L(i, j) = L(i, j − 1).

Hence, the recursion handles all possible cases correctly. The running time of this algorithm is O(n2),
as there are O(n2) subproblems and each takes O(1) time to evaluate according to our recursion.

6.8. Subproblems: For 1 ≤ i ≤ n and 1 ≤ j ≤ m, define subproblem L(i, j) to be the length of the longest
common substring of x and y terminating at xi and yj . The recursion is:

L(i, j) =

{

L(i − 1, j − 1) + 1 if equal(xi, yj) = 1
0 otherwise

The initialization is, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m:

L(0, 0) = 0

L(i, 0) = 0

L(0, j) = 0

The output of the algorithm is the maximum of L(i, j) over all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

Correctness and Running Time: The initialization is clearly correct. Hence, it suffices to prove the
correctness of the recursion. The longest common substring terminating at xi and yj must include xi

and yj : hence, it will be 0 if these characters are different and L(i− 1, j − 1)+1 if they are equal. The
running time is O(mn) as we have mn subproblems and each takes constant time to evaluate through
the recursion.
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6.9. Subproblems and Recursion: Let the string be indexed x1 · · ·xn. Let 0 = c0 ≤ c1 ≤ c2 ≤ · · · ≤ cm ≤
cm+1 = n be the locations of the m + 2 cuts, which include the beginning and end of the string(i.e. ci

is the index after which the ith cut takes place). Let us the define the following subproblems for all
i, j such that 0 ≤ i < j ≤ m + 1:

L(i, j) = minimum cost of breaking x[ci + 1, · · · , cj ] at positions ci+1, · · · , cj−1

Notice then that the solution to our problem will be given by the value L(0, n).

Algorithm and Recursion: Initialize the dynamic program by setting L(i, i+1) = 0 for all i, 0 ≤ i ≤ n.
This is correct as the string x[ci + 1, · · · , ci+1] needs no further cutting. The recursion to evaluate the
values L(i, j) is then, for j > i + 1:

L(i, j) = min
i<k<j

{L(i, k) + L(k, j) + (cj − ci)}

Correctness and Running Time: The recursion is correct as it is equivalent to selecting the first cut k
to make to minimize the cost of breaking up x[ci + 1, · · · , cj ]. The running time is O(n3), as we have
O(n2) subproblems, each of which takes O(n) time to solve.

6.10. One way to solve this problem is by dynamic programming.
Subproblems: Define L(i, j) to be the probability of obtaining exactly j heads amongst the first i coin
tosses.

Algorithm and Recursion: By the definition of L and the independence of the tosses, it is clear that:

L(i, j) = piL(i − 1, j − 1) + (1 − pi)L(i − 1, j) j = 0, 1, . . . , i

We can then compute all L(i, j) by initializing L(0, 0) = 1, L(i, j) = 0 for j < 0, and proceeding
incrementally (in the order i = 1, 2, . . . , n, with inner loop j = 0, 1, . . . , i). The final answer is given by
L(n, k).

Correctness and Running Time: The recursion is correct as we can get j heads in i coin tosses either
by obtaining j − 1 heads in the first i− 1 coin tosses and throwing a head on the last coin, which takes
place with probability piL(i− 1, j − 1), or by having already j heads after i− 1 tosses and throwing a
tail last, which has probability (1 − pi)L(i − 1, j). Besides, these two events are disjoint, so the sum
of their probabilities equals L(i, j). Finally, computing each subproblem takes constant time, so the
algorithm runs in O(n2) time.

Another approach is to observe that the probability is exactly the coefficient of xk in the polynomial
g(x) =

∏n
i=1(pix + (1 − pi)). We can compute g(x) using divide-and-conquer in O(n log2 n) time by

recursively computing g1(x) =
∏n/2

i=1(pix + (1 − pi)), g2(x) =
∏n

i=n/2+1(pix + (1 − pi)) and then using

FFT to calculate g(x) = g1(x)g2(x).

6.11. Subproblems: Let us the define the following subproblems for all i, j such that 1 ≤ i ≤ n, 1 ≤ j ≤ m:

L(i, j) = length of longest common subsequence between x[1, · · · , i] and y[1, · · · , j]

Then, the solution to the original problem will be given by L(n,m).

Algorithm and Recursion: Initialize the dynamic program by setting L(i, 0) = 0 and L(0, j) = 0 for all
i, j. The recursion to compute the values L(i, j) correctly is the following:

L(i, j) = max{L(i − 1, j), L(i, j − 1), L(i − 1, j − 1) + equal(xi, yj)}

where equal(x, y) is 1 if x and y are the same character and is 0 otherwise.
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Correctness and Running Time: The recursion is correct as the alignment producing the longest
common subsequence for L(i, j) will have in its last position either a deletion, two characters matched
(either equal or different characters) or an insertion. The running time is O(mn) as there are mn
subproblems, each of which takes O(1) time.

6.12. Let A(i, j) be the minimum cost triangulation of the polygon Pij spanned by vertices i, i + 1, . . . , j.
In the optimum triangulation of Pij , the edge (i, j) is covered by some triangle, say (i, k, j). Then the
optimum triangulation of Pij splits it into the triangle (i, k, j) and the optimum triangulations of the
polygons Pik and Pkj . That is, for i < j,

A(i, j) = min
i<k<j

{A(i, k) + A(k, j) + d(i, k) + d(k, j)},

where d(·, ·) are the distances between vertices. The base cases are A(i, i + 1) = 0, for all i. Since each
computation A(i, j) can be done in O(n) time and there are O(n2) pairs (i, j), the running time of
the algorithm is O(n3). To recover the best triangulation, it is sufficient to keep track of a choice of
k which is maximizing for each A(i, j) above. Then, starting at A(1, n), we can backtrack to identify
the diagonals included in the triangulation.

6.13. a) Consider the sequence (2, 9, 1, 1). Then, the best available card at the start has value 2, but this
leads only to a score of 3, as the opponent picks the card of value 9 in the next turn. Instead,
choosing the 1 at the start yields a final score of 10.

b) Subproblems: Define subproblems A(i, j) for i ≤ j, where A(i, j) is the difference between the
largest total the first player can obtain and the corresponding score of the second player when
playing on sequence si, si+1, · · · , sj . This will be positive if and only if the first player has the
larger total.

Algorithms and Recursion: We can solve all the subproblem by initializing A(i, i) = si for all i
and using the update rule for i < j:

A(i, j) = max{si − A(i + 1, j), sj − A(i, j − 1)}

We can also keep track of the optimal move at each stage by simultaneously maintaining a matrix
M(i, j), where M(i, j) will be set to first if A(i, j) takes the value of the first element in the
maximization, and to last otherwise.

Correctness and Running Time: The recursion is correct, as at any stage of the game there are
two possible moves for the first player: either choose the first card, in which case he will gain si

and score −A(i + 1, j) in the rest of the game, or the last card, gaining sj and −A(i, j − 1) from
the remaining cards. The algorithm computes all the subproblems and the entries of M in time
O(n2) as each update takes time O(1). Moreover, the player can then just read off the matrix M
to learn the best strategy at any point of the game.

6.14. Subproblems: Define XY subproblems. For 1 ≤ i ≤ X and 1 ≤ j ≤ Y , let C(i, j) be the best return
that can be obtained from a cloth of shape i × j. Define also a function rect as follows:

rect(i, j) =

{

maxk ck for all products k with ak = i and bk = j
0 if no such product exists

Algorithm and Recursion: Then the recursion is:

C(i, j) = max{ max
1≤k<i

{C(k, j) + C(i − k, j)}, max
1≤h<j

{C(i, h) + C(i, j − h)}, rect(i, j)}

It remains to initialize the smallest subproblems correctly:

C(1, j) = max{0, rect(1, j)}

C(i, 1) = max{0, rect(i, 1)}
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The final solution is then the value of C(X,Y ).

Correctness and Running Time: For proving correctness, notice that C(i, j) trivially has the intended
meaning for the base cases with i = 1 or j = 1. Inductively, C(i, j) is solved correctly, as a rectangle
i× j can only be cut in the (i−1)+(j−1) ways considered by the recursion or be occupied completely
by a product, which is accounted for by the rect(i, j) term. The running time is O(XY (X + Y + n))
as there are XY subproblems and each takes O(X + Y + n) to evaluate.

6.15. One way to solve this problem is by dynamic programming.
Subproblems: We define subproblem A(i, j) for 1 ≤ i, j ≤ n to represent the probability that A is the
first to win n games, given that after i + j games A has won i.

Algorithm and Recursion: We can initialize A by setting A(n, j) = 1 for j 6= n and A(i, n) = 0 for all
i. The other subproblems can be solved incrementally in decreasing order of i + j using the recursion:

A(i, j) =
1

2
(A(i, j + 1) + A(i + 1, j))

Correctness and Running Time: The recursion is correct as we can compute A(i, j) by conditioning on
the outcome of the (i + j + 1)th game. Both outcomes take place with probability 1

2 . If A wins, then
it wins the game with probability A(i + 1, j). If B wins, A has a probability of winning of A(i, j + 1).
If we are interested in finding solutions for all subproblems, we need to solve O(n2) subproblems, each
taking O(1) for a total running time of O(n2). If we are only after the A(i, j) subproblem, we can stop
once we solved O((n − (i + j))2) subproblems.

6.16. For a subset of garage sales S ⊆ {g1, · · · , gn} and gj ∈ S, let C(S, j) be the profit of the most profitable
path starting at home, visiting only garage sales in S and ending at gj . To express C(S, j) in terms
of smaller subproblems, consider the laste garage sale gi ∈ S − {gj} visited before gj . The path profit
up to gi is C(S − {gj}, i), whilst the marginal profit of visiting gj is pj − dij . We must pick i as to
maximize the profit, so we have:

C(S, j) = max
gi∈S:i6=j

{C(S − {gj}, i) + pj − dij}

We can then compute solutions by initializing C({gi}, i) to be pi + d0i for all 1 ≤ i ≤ n and solving
the subproblems in increasing order of |S|. The final solution is the minimum over all S,gj ∈ S of
C(S∗, j∗) + dj0, where we also include the cost of returning home. Moreover, we can also keep record,
for every C(S, j) of which garage gi yielded a maximum in the recursion; this gi is the last garage
visited before getting to gj in a best path for C(S, j). We can then use this information to backtrack
from C(S∗, j∗) to reconstruct the entire optimal path. This algorithm solves O(n2n) subproblems,
each in O(n) time, so it has total running time O(n22n).

6.17. This problem reduces to Knapsack with repetitions. The total capacity is v and there is an item i of
value xi and weight xi for each coin denomination. It is possible to make change for value v if and
only if the maximum value we can fit in v is v. The running time is O(nv).

6.18. Use the same reduction as in 6.17, but reduce to Knapsack without repetition. The running time is
O(nv).

6.19. This is similar to 6.17 and 6.18. The problem reduces to Knapsack without repetition with a capacity
of v, but this time we have k items of value xi and weight xi for each coin denomination xi, i.e. a total
of kn items. The running time is O(nkv).

6.20. Let S(i, j) be the cost of cheapest tree formed by words i to j, for 1 ≤ i, j ≤ n. Also, initialize S(i, j)
to 0 if i > j. Then S(i, j) will be the minimum cost of the tree over all choices of word k, i ≤ k ≤ j, to
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place at the root. If word k is at the root, the cost of the left subtree will be S(i, k − 1) and the cost
of right subtree will be S(k + 1, j). Moreover, all words will need to pay one comparison at the root

node, so the total cost of the tree will be
∑j

t=i pt + S(i, k − 1) + S(k + 1, j). Hence:

S(i, j) = min
i≤k≤j

{

j
∑

t=i

pt + S(i, k − 1) + S(k + 1, j)}

Finally, the cost of the optimal tree will be S(1, n). To reconstruct the tree, it suffices to keep track
of which root k minimized the expression in the recursion for each subproblem and backtrack from
S(1, n).

6.21. The subproblem V (u) will be defined to be the size of the minimum vertex cover for the subtree rooted
at node u. We have V (u) = 0 if u is a leaf, as the subtree rooted at u has no edges to cover. The
crucial observation is that if a vertex cover does not use a node it has to use all its neighboring nodes.
Hence, for any internal node i

V (i) = min







∑

j:(i,j)∈E



1 +
∑

k:(j,k)∈E

V (k)



 , 1 +
∑

j:(i,j)∈E

V (j)







The algorithm can then solve all the subproblems in order of decreasing depth in the tree and output
V (n). The running time is linear in n because while calculating V (i) for all i we look at most at
2 ∗ |E| = O(n) edges in total.

6.22. This problem reduces to Knapsack without repetition. The knapsack will have capacity t and each
number ai will be an item of value ai and weight ai. A subset adding up to t will exist if and only if a
total value of t can fin in the knapsack. The dynamic programming algorithm then solves the problem
in time O(n

∑

i ai).

6.23. We define P (i, b) to be the maximum probability that the system works correctly up to its ith stage
when adding redundancy to stages 1 to i and using budget b. We can initialize P (0, b) = 1 for all b. To
compute P (i, b), we consider the number of machines mi we want to add at stage i. If we are adding
mi machines, our success probability will be the product of P (i − 1, b − mici), the best we can do on
the previous stages with the remaining budget, and (1− (1 − ri)

mi), the probability of stage i working
correctly. More formally, we can update P (i, b) for 1 ≤ i ≤ n and 0 ≤ b ≤ B using the recursion:

P (i, b) = max
0≤mi≤

⌊

b
ci

⌋

{P (i − 1, b − mici) × (1 − (1 − ri)
mi)}

We can then solve all subproblems in ascending order of i by looping over all b’s before proceeding
to the next i. P (n,B) will be success probability associated with the best allocation of redundancy.
To recover the actual number of machines added at each stage for this optimal allocation, we need to
keep track for every P (i, b) of which value of mi yielded the maximum value. We can then start at
P (n,B) and backtrack to find the optimal allocation. We have nB subproblems, each taking time at
most O(maxi

B
ci

) for a total running time of O(nB2 maxi
1
ci

).

6.24. Assume m = O(n).

a) Consider the usual matrix of subproblems E(i, j). If we update the values column by column, at
every point we only need the current column and the previous column to perform all calculations.
Hence, if we are just interested in the final value E(m,n) we may keep only two columns at every
time, using space O(n). Note that we are not able now to have a pointer structure to recover the
optimal alignment, as we would need pointers for all subproblems, which would take space mn.
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b) Together with the subproblem solution L(i, j), for each j ≥ m/2, in each of the active two columns,
maintain a pointer to the index k at which the optimal path leading to (i, j) crossed the m/2
column. Such pointer can be easily updated at every recursion by copying the pointer of the
subproblem from which the optimal solution is derived.

c) Consider the space requirement first. At any time during the running of this scheme, a single
dynamic programming data structure is active, taking up space O(n). All that is left to store is
the values k for all the subproblems on which we recurse. These are at most m as every values
corresponds to an index of x matched to one of y in the minimum edit distance alignment.. Hence,
the total space required is O(n). For the running time analyisis, notice that level i + 1 of the
recursion takes half the time of level i. Hence, the total running time will be bounded above by
O(mn)(1 + 1

2 + 1
4 + · · · ) = 2O(mn).

6.25. Let M [i, s1, s2] be 1 if there are two disjoint subsets I, J ⊆ {1, . . . i} such that
∑

j∈I aj = s1 and
∑

j∈J aj = s2. An instance of 3-Partition has positive solution if and only if M [n, S/3, S/3] = 1.
We can use dynamic programming to fill out the three dimensional table specified by M [i, s1, s2] for
1 ≤ i ≤ n, 0 ≤ s1, s2 ≤ S/3. An arbitrary entry in the table can be calculated from three previous
entries:

M [i, s1, s2] = M [i − 1, s1 − ai, s2] ∨ M [i − 1, s1, s2 − ai] ∨ M [i − 1, s1, s2].

In words, this definition says that if there exist two disjoint subsets I, J ⊆ {1, . . . , i} such that
∑

j∈I aj = s1 and
∑

j∈J aj = s2, then either i ∈ I, i 6∈ J or i ∈ J, i 6∈ I or i 6∈ I, J . In the case that i ∈ I,
∑

j∈I,j 6=i = s1−ai and
∑

j∈J = s2 (since I and J are disjoint), and so M [i−1, s1−ai, s2] = 1. The case
of i ∈ J is symmetric. In the case that i 6∈ I, J , then I, J ⊆ {1, . . . , i − 1}, and so M [i − 1, s1, s2] = 1.

The base cases for the recursion are M [i, 0, 0] = 1 for all i ≥ 0 and M [i, s1, s2] = 0 if i < 0, s1 < 0
or s2 < 0. The table size is n × S/3 × S/3. Filling in a single entry takes constant time, so the total
running time for the algorithm is O(nS2). ( One could also notice that the table is symmetric because
M [i, s1, s2] = M [i, s2, s1] but this symmetry only gives a constant factor improvement in the running
time.)

6.26. This is a simple variant of the edit distance algorithm defined in class. The recursion is modified to:

E(i, j) = max{E(i − 1, j) + δ(xi,−), E(i − 1, j − 1) + δ(xi, yj), E(i, j − 1) + δ(−, yj)}

The initialization has also to be modified to deal properly with the new scoring for gaps. We have, for
i, j > 0:

E(0, 0) = 0

E(i, 0) = E(i − 1, 0) + δ(xi,−)

E(0, j) = E(0, j − 1) + δ(−, yj)

The correctness follows by the same argument as for the edit distance algorithm. The running time is
again O(mn).

6.27. This is another modification of the standard edit distance algorithm, only more advanced. You should
notice that there is no simple way to modify the existing recursion to incorporate the new kind of
gap penalties. In particular, it would be necessary at every point to know whether the previous
subproblem solutions were given by alignments with a deletion or insertion in their last position.
Moreover, it might be that an optimal alignment for E(i, j) is not an extension of the optimal for
E(i− 1, j), E(i− 1, j − 1), E(i, j − 1) as an alignment with smaller previous score but terminating with
a gap might have a smaller gap penalty and beat all extensions of optimal alignments. This suggests
that we should not keep a single matrix of subproblems, but 3. E will be the matrix of subproblems
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where the alignments are constrained to be a substitution or a match in their last position. Ex will be
the matrix of subproblems over the alignments which have a gap in the last position of string x. Ey is
defined similarly for y. Given these definitions, we just need to work out the recursion correctly case
by case.

E(i, j) = max{E(i − 1, j − 1), Ex(i − 1, j − 1), Ey(i − 1, j − 1)} + δ(xi, yj)

Ex(i, j) = max{E(i − 1, j) − c0 − c1, Ex(i − 1, j) − c1, Ey(i − 1, j) − c0 − c1}

Ey(x, y) = min{E(i, j − 1) − c0 − c1, Ex(i, j − 1) − c0 − c1, Ey(i, j − 1) − c1}

The output will just be the maximum of E(m,n), Ex(m,n) and Ey(m,n). This takes O(mn) as we
still have O(mn) subproblems, each evaluated in constant time.

6.28. This only requires a simple modification to 6.26. E(i, j) becomes the score of the best scoring substring
of x[1, · · · , i] and y[1, · · · , j]. The recursion is then modified to take into account the possibility that
the best local alignment be empty:

E(i, j) = max{E(i − 1, j) + δ(xi,−), E(i − 1, j − 1) + δ(xi, yj), E(i, j − 1) + δ(−, yj), 0}

6.29. For i ∈ {1, · · · , n}, let W (i) be the the weight of the best subset of consistent partial matches in
x[1, · · · , i]. To compute W (i), we consider the two following cases:

– the best subset of partial matches contains a match j with rj = i,

– the best subset of partial matches does not contain such j

In the first case, W (i) will be the sum of wj and the weight of the best match on the remaining of the
string, i.e. W (lj − 1). In the second case, we will just have W (i) = W (i − 1). This shows that the
following recursion is correct:

W (i) = max{W (i − 1), max
j:rj=i

{W (lj − 1) + wj}}

The algorithm will then proceed computing W (i) in ascending order of i and will output W (n) as best
total weight achievable. To reconstruct the actual sequence of partial matches, it suffices to keep track,
for all W (i) of which j maximizes the expression in the recursion, when the second maximum is the
larger. We can then follow these pointers from W (n) backwards to identify the optimal alignment.
The running time is O(n + m), where m is the number of partial matches, as we have n subproblems
and each partial match is considered once in the maximizations.

6.30. a) See Figure 1.

b) It suffices to give an algorithm that minimizes the score for length 1 sequences, i.e. single charac-
ters. We can then apply this algorithm to all positions. The final sequence assignment will have
score equal to the sum of the scores of the trees for each position and, as there are all minimum,
it will also be minimum score.

The dynamic programming algorithm works by solving the problem in each subtree. For each
internal node u, we define S(u) to be the set of the labels s(u) of u over all optimal assignments
to u’s subtree.

Claim: Let p be an internal node and let c1 and c2 be its children. If S(c1)∩ S(c2) is non-empty,
then S(p) = S(c1) ∩ S(c2). Otherwise, S(p) = S(c1) ∪ S(c2).
Proof: Let C(u) be the minimum cost of a labeling of the subtree rooted at u. Consider the two
cases:
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Figure 1: Parsimony tree for 6.30 a)

1) I = S(c1) ∩ S(c2) is non-empty. Then, any assignment with s(p) ∈ I will have cost C(c1) +
C(c2), which is minimum for the subtree rooted at p. Moreover, any assignment with s(p) /∈ I
will pay at least C(c1) + C(C2) + 1 and will not be optimal. Hence, S(p) = I.

2) If I = S(c1) ∩ S(c2) is empty, consider the union U = S(c1) ∪ S(c2). For any s(p) ∈ U ,
it is possible to construct an assignment of cost C(c1) + C(c2) + 1 by choosing a optimal
assignment corresponding to s(p) for one child’s subtree and any assignment for the other.
For s(p) /∈ U , we pay 1 + C(ci) for each child i for whose subtree we use an optimal labeling
and at least the same quantity 1 + C(ci) for each child i for which we do not use an optimal
labeling. Hence, we pay at least 2 + C(c1) + C(c2). This shows that the optimal assignments
for the subtree rooted at p are those consisting of s(p) ∈ U and optimal assignments for the
children’s subtrees.

We can then initialize S(v) = {s(v)} for the leaves and proceed up the tree, updating S(p) to
be the intersection of S(c1) and S(c2), if this is non-empty, and their union otherwise. Once, we
have reached the root and calculated S(r) we can produce an actual labeling by setting s(r) to
any label in S(r). The label for all other internal nodes u can then be calculated from the label
s(p) of u’s parent by taking s(u) = s(p) if s(p) ∈ S(u) and s(u) to be any label in S(u) otherwise.

For each position of the string, we have O(n) subproblems S(u), each of which takes time O(|Σ|)
to update. The total running time is then O(|Σ|nk).


