
Chapter 5 - Solutions



2

5.1 (a) 19

(b) 2

(c)

Edge included Cut
AE {A,B, C, D} & {E,F,G,H}
EF {A,B, C, D, E} & {F,G, H}
BE {A,E, F, G, H} & {B,C,D}
FG {A,B, E} & {C,D,F,G,H}
GH {A,B, E, F,G} & {C,D,H}
CG {A,B, E, F,G, H} & {C,D}
GD {A,B, C, E, F,G, H} & {D}

5.2 (a)

Vertex included Edge included Cost
A 0
B AB 1
C BC 3
G CG 5
D GD 6
F GF 7
H GH 8
E AE 9

5.3 Since the graph is given to be connected, it will have an edge whose removal still leaves it connected,
if and only if it is not a tree i.e. has more than |V | − 1 edges. We perform a DFS on the graph until
we see |V | edges. If we can find |V | edges then the answer is “yes” else it is “no”. In either case, the
time taken is O(|V |).

5.4 Let ei, ni denote the number of edges and vertices in the ith component. Since a connected graph on
t vertices must have at least t− 1 edges,

|E| =
k∑

i=1

ei ≥
k∑

i=1

(ni − 1) = n− k

5.5 (a) The minimum spanning tree does not change. Since, each spanning tree contains exactly n − 1
edges, the cost of each tree is increased n− 1 and hence the minimum is unchanged.

(b) The shortest paths may change. In the following graph, the shortest path from A to D changes
from AB −BC − CD to AD if each edge weight is increased by 1.

B

A

C

D

1

1

5

1

5.6 Suppose the graph has two different MSTs T1 and T2. Let e be the lightest edge which is present in
exactly one of the trees (there must be some such edge since the trees must differ in at least one edge).
Without loss of generality, say e ∈ T1. Then adding e to T2 gives a cycle. Moreover, this cycle must
contain an edge e′ which is (strictly) heavier that e, since all lighter edges are also present in T1, where
e does not induce a cycle. Then adding e to T2 and removing e′ gives a (strictly) better spanning tree
than T2 which is a contradiction.

5.7 Multiply the weights of all the edges by -1. Since both Kruskal’s and Prim’s algorithms work for
positive as well as negative weights, we can find the minimum spanning tree of the new graph. This is
the same as the maximum spanning tree of the original graph.



3

5.8 Consider the edge e = (s, u) having the minimum weight among all the edges incident on s. Since all
the edge weights are positive, this is the unique shortest path from s to u and hence must be present
in any shortest path tree. Also, Prim’s algorithm includes this edge in construction of the MST. Since
by problem 5.6, the MST must be unique (because of distict edge weights), all the shortest path trees
and the MST must share at least one edge.

5.9 (a) False, consider the case where the heaviest edge is a bridge (is the only edge connecting two
connected components of G.

(b) True, consider removing e from the MST and adding another edge belonging to the same cycle.
Then we get e new tree with less total weight.

(c) True, e will belong to the MST produced by Kruskal.

(d) True, if not there exists a cycle connecting the two endpoints of e, so adding e and removing
another edge of the cycle, produces a lightest tree.

(e) True, consider the cut that has u in one side and v in the other, where e = (u, v).

(f) False,assume the graph consists of two adjacent 4-cycles,the one with very heavy edges of weight
M and the other with very light edges of weight m. Let e be the edge in the middle with weight
m < w(e) < M . Then the MST given by Kruskal, will pick all edges of weight m first and will
not include e in the MST.

(g) False. In the following graph, the MST has edges (u, w) and (v, w) while Dijkstra’s algorithm
gives (u, v), (u, w).

u

v

w10

11
2

(h) False. In the previous graph the shortest path between u and v is the edge (u, v) but the only
MST is (u, w), (v, w)

(i) True

(j) True. Suppose that the path from s to t has an edge longer than r. Then one of the edges of the
r-path must be absent (otherwise there is cycle). Including this and removing the longer edge
gives a better tree which is a contradiction.

5.10 Let T ∪H = {e1, . . . , ek}. We use the cut property repeatedly to show that there exists an MST of H
containing T ∩H.

Suppose for i ≥ 0, X = {e1, . . . , ei} is contained in some MST of H. Removing the edge ei+1 from T
divides T in two parts giving a cut (S, G\S) and a corresponding cut (S1,H\S1) of H with S1 = S∩H.
Now, ei+1 must be the lightest edge in G (and hence also in H) crossing the cut , else we can include
the lightest and remove ei+1 getting a better tree. Also, no other edges in T , and hence also in X,
cross this cut. We can then apply the cut property to get that X ∪ ei+1 must be contained in some
MST of H. Continuing in this manner, we get the result for T ∩H = {e1, . . . , ek}.

5.11 The figure below shows the data-structure after the operations.

5.12 For the sake of convenience, assume that in case of a tie, we make the higher numbered root point to
the lower numbered root. Let n = 2k. Consider the following operations starting from the singleton
sets {1}, . . . , {2k}
union(1,2), union(3,4), . . ., union(2k − 1, 2k)
union(2,4), union(6,8), . . ., union(2k − 2, 2k)
...
union(2i, 2 · 2i), union(3 · 2i, 4 · 2i), . . ., union(2k − 2i, 2k)



4

8

1 2 4

3

6 5 7

...
union(2k−1, 2k) The above are O(2k) operations which make a tree in which the depth of element i
is blog ic (the depth of element i increases in the first j steps, if 2j is the largest power of 2 less that
i). The cost of the above is

∑k−1
i=1 i · 2k−i = O(2k). We now perform a find for every element.

find(1), . . ., find(2k)

The cost of the find operations is
∑2k

i=1blog ic = O(k2k) = O(n log n). Hence, the above is a sequence
of O(n) operations taking time O(n log n).

5.13 Huffman’s algorithm assigns codewords of length 1 to D, length 2 to A and length 3 to B and C. So,
one possible encoding can be 0 for D, 10 for A, 110 for B and 111 for C.

5.14 (a) a → 0, b → 10 ,c → 110, d → 1110, e → 1111.

(b) length = 1000000
2 · 1 + 1000000

4 · 2 + 1000000
8 · 3 + 2 · 1000000

16 · 4 = 1875000

5.15 (a) (fa, fb, fc) = (2/3, 1/6, 1/6) gives the code {0, 10, 11}.
(b) This encoding is not possible, since the code for a (0), is a prefix of the code for c (00).

(c) This code is not optimal since {1, 01, 00} gives a shorter encoding. Also, it does not correspond
to a full binary tree and hence cannot be given by the Huffman algorithm.

5.16 a) Let s be the symbol with the highest frequency (probability) p(s) > 2/5 and suppose that it
merges with some other symbol during the process of constructing the tree and hence does not
correspond to a codeword of length 1. To be merged with some node, the node s and some other
node x must be the two with minimum frequencies. This means there was at least one other node
y (formed by merging of other nodes), with p(y) > p(s) and p(y) > p(x). Thus, p(y) > 2/5 and
hence p(x) < 1/5.
Now, y must have been formed by merging some two nodes z and w with at least one of them
having probability greater than 1/5 (as they add up to more than 2/5). But this is a contradiction
- p(z) and p(w) could not have been the minimum since p(x) < 1/5.

y

z w s
> 2/5 < 1/5

> 2/5

x

b) Suppose this is not the case. Let x be a node corresponding to a single character with p(x) < 1/3
such that the encoding of x is of length 1. Then x must not merge with any other node till the
end. Consider the stage when there are only three leaves - x, y and z left in the tree. At the last
stage y, z must merge to form another node so that x still corresponds to a codeword of length 1.
But, p(x) + p(y) + p(z) = 1 and p(x) < 1/3 implies p(y) + p(z) > 2/3. Hence, at least one of p(y)
or p(z), say p(z), must be greater than 1/3. But then these two cannot merge since p(x) and p(y)
would be the minimum. This leads to a contradiction.

5.17 The longest codeword can be of length n − 1. An encoding of n symbols with n − 2 of them having
probabilities 1/2, 1/4, . . . , 1/2n−2 and two of them having probability 1/2n−1 achieves this value.



5

5.18 —————————–

5.19 (a) It is enough to show that a symbol with frequency pi = 2−ki will be encoded with log 1
pi

= ki

bits. This is easily proved by induction : since all frequencies are a power of 1/2, the two least
probable symbols will have the same probability f = 1

2k . Merging them according to the Huffman
procedure into a new symbol, of probability 1

2k−1 , will allow us to use our inductive hypothesis
for the new set of n − 1 symbols. The length of the first n − 2 symbols is the same in the old
and new tree, equal to log 1

pi
, i = 1, · · ·n − 2 and the length of the last two in the old tree is

1 + log 1
2k−1 = k − 1 + 1 = k.

(b) The largest possible entropy is when all the symbols have the same probability ,1/n. The entropy
in that case is logn.The entropy is smallest when there exists a unique symbol with probability 1
(and all the others have probability 0). The entropy in that case is 0.

5.20 For each leaf of the tree, the edge incident on the leaf must be in the matching. Also, if we remove
all these leaves, the leaves of the resulting tree have already been covered and the edges incident on
them must not be in the matching. We can then construct the matching bottom up, including and
excluding edges at alternate steps. If at any step, we need to include two edges incident on the same
vertex, then no matching exists.

This can be done in linear time by maintaining the degree of every vertex and maintaining the leaves
(nodes with degree 1) in a list. At each step, we update the degree of the endpoints of edges that we
delete.

5.21 For a connected graph, removing the feedback arc set leaves a spanning tree. Hence, to find the
minimum feedback arc set, we need to find the maximum spanning tree for every connected component
of G. To do that, we run Kruskal’s algorithm, negating the edge weights of the original graph. Once
we have the Maximum Spanning Tree T , we output E′ = the set of the edges that don’t belong to T .
Running time is the same as Kruskal.

5.22 (a) Consider an MST T which contains e. Removing e breaks the tree into two connected components
say S and V \S. Since all the vertices of the cycle cannot still be connected after removing e, at
least one edge, say e′ in the cycle must cross from S to V \S. However, then replacing e by e′

gives a tree T ′ such that cost(T ′) ≤ cost(T ). Since T is an MST, T ′ is also an MST which does
not contain e.

(b) If e is the heaviest edge in some cycle of G, then there is some MST T not containing e. However,
then T is also an MST of G− e and so we can simply search for an MST of G− e. At every step,
the algorithm creates a new graph (G − e) such that an MST of the new graph is also an MST
of the old graph (G). Hence the output of the algorithm (when the new graph becomes a tree) is
an MST of G.

(c) An undirected edge (u, v) is part of cycle iff u and v are in the same connected component of
G− e. Since the components can be found by DFS (or BFS), this gives a linear time algorithm.

(d) The time for sorting is O(|E| log |E|) and checking for a cycle at every step takes O(|E|) time.
Finally, we remove |E| − |V |+ 1 edges and hence the running time is O(|E| log |E|+ (|E| − |V |) ∗
|E|) = O(|E|2).

5.23 To solve this problem, we shall use the characterization that T is an MST of G, if and only if for every
cut of G, at least one least weight edge across the cut is contained in T .

The “only if” direction is easy since if the lightest edge across a cut is not in T , then we can include it
and remove some edge in T that crosses the cut (there must be at least one) to get a better tree. To
prove the “if” part, note that at each in Prim’s algorithm, we include the lightest edge across some cut,
which can be chosen from T . Since T is a possible output of Prim’s algorithm, it must be an MST.

(a) Since the change only increases the cost of some other spanning trees (those including e) and the
cost of T is unchanged, it is still an MST.



6

(b) We include e in the tree, thus creating a cycle. We then remove the heaviest edge e′ in the cycle,
which can be found in linear time, to get a new tree T ′. It is intuitively clear that this algorithm
should work, but a rigorous proof seems surprisingly tricky. To prove this, we argue that T ′

contains a least weight edge across every cut of G and is hence an MST.
Note that since the only changed edge is e, T ∪ {e} already includes a least weight edge across
every cut. We only removed e′ from this. However, any cut crossed by e′, must also be crossed
by at least one more edge of the cycle, which must have weight less than or equal to e′. Since this
edge is still present in T ′, it contains a least weight edge across every cut.

(c) The tree is still an MST if the weight of an edge in the tree is reduced. Hence, no changes are
required.

(d) We remove e from the tree to obtain two components, and hence a cut. We then include the
lightest edge across the cut to get a new tree T ′. We can now “build up” T ′ using the cut
property to show that it is an MST.
Let X ⊆ T ′ be a set of edges that is part of some MST, and let e1 ∈ T ′\X. Then, T ′\{e1} gives
a cut which is not crossed by any edge of X and across which e1 is the lightest edge. Hence,
X ∪ {e1} is also a part of some MST. Continuing this, we can grow X to X = T ′, which must be
then an MST.

5.24 We first note that each u ∈ U must have at least one neighbor in V \U , else the problem has no solution.
If T is the optimal tree, then T\U must be a spanning tree of G\U . Moreover, it must be a minimum
spanning tree since the nodes in U can be attached as leaves to any spanning tree. Hence, we first find
an MST of G\U (in time O(|E| log |V |)) and then for each u ∈ U , we add the lightest edge between u
and G\U (in time O(|E|)).

5.25 To implement a counter of unspecified length, suppose we maintain it as a list of bits, with a pointer
to the most significant bit. Each time we need to increase the length of the binary string, we can add
a new element to the front of the list and update this pointer.

To increment, we set the first 0 from the right to 1 and set all the 1s to the right of it to 0. Since we
start from the all 0 string, each bit is set to 1 once before it is set to 0. Hence, the total cost of k
increments is at most twice the number of bits set to 1, which is O(k) since each increment sets exactly
one bit to 1.

Finally, note that the cost of a reset (setting all bits to 0), is at most the number of significant digits
(if we maintain a pointer to the most significant 1 bit). This is at most the number of increment
operations since the previous reset operation. Hence, instead of charging a reset operation, we double
the cost of each increment operation which gives the cost of n increment and reset operations as O(n).

5.26 We construct two graphs Geq = (V,Eeq) and Gneq = (V,Eneq) where V {1, . . . , n}. We have (i, j) ∈ Eeq

if xi = xj is a constraint and (i, j) ∈ Eneq if xi 6= xj is a constraint. Since equality is an equivalence
relation, all the variables in each connected component of Geq must have the same value. The system
of constraints is satisfiable if and only if there is no edge (i, j) ∈ Eneq such that xi and xj are in the
same component in Geq. The decomposition in components and checking for edges can both be done
in O(m + n) time.

5.27 (a) (3, 3, 1, 1) and (100, 2, 1, 1) are both valid examples.

(b) i. Suppose the neighbors of v1 in G are not v2, v3, . . . , vd1+1. Therefore, there is some i ∈
{2, 3, . . . , d1 + 1} such that (v1, vi) /∈ E. In addition, since v1 has d1 neighbors, there must
be some j > d1 + 1 such that (v1, vj) ∈ E. In particular, 2 ≤ i < j. Next, note that the
vertices vi and vj have di and dj − 1 neighbors in V − {d1} respectively. Now, i < j implies
di ≥ dj ≥ 1. Hence, di > dj − 1, so there exists some vertex u ∈ V − {d1} that is a neighbor
of vi but not of vj .

ii. Delete the edges (v1, vj) and (u, vi) and add the edges (v1, vi) and (u, vj).
iii. We repeatedly apply the above argument till v1 has neighbors v2, . . . , vd+1.



7

(c) From (b), we know that there exists a graph on n vertices with degree sequence (d1, . . . , dn) iff
there exists a graph on n− 1 vertices with degree sequence (d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn).
The algorithm is as follows: sort (and relabel) the numbers d1, . . . , dn in decreasing order. Remove
d1 from the list; decrease d2, . . . , dd1+1 by 1 (output “no” if d1 + 1 > n); remove any 0’s in the
resulting list, and recurse on the list of at most n − 1 numbers. The base case is the empty list,
where you output “yes”. The running time is O(n2+m) (since you can sort numbers in a bounded
range in linear time); with the appropriate data structure, you can avoid sorting at every stage,
and obtain a O(m + n) running time.

5.28 We construct a graph G = (V,E) as follows. The vertex set consists of a vertex for each person. An
edge e = (u, v) between two vertices represents the relation ‘person v knows person u’ . The problem
reduces of finding a subset V ′ of V such that in the induced graph each vertex has degree more than
5 and less than |V ′| − 5. We do that iteratively : at the beginning, we look at all nodes and delete
those with degree more than |V |−5 and those with degree less than 5. We update our graph to be the
induced graph with vertex set the remaining vertices. Then, we do the same procedure again (with the
updated degrees for every node). We repeat the above until we end up with a graph G′ where after
running the procedure, we don’t delete any vertices. The algorithm takes time O(n) for every iteration
of the above procedure, therefore a total of O(n2) time.

5.29 If we consider the binary tree with all strings of length k at level k and the left and right branches
representing adding a 0 and 1 respectively, it contains all the binary strings and hence all the strings
in the encoding (we only need to have number of levels equal to maximum length of a string). Also,
since all intermediate nodes in a path from the root to a node v are prefixes of v, the strings of the
encoding must be all at leaves since it is prefix-free.
To argue that the tree must be full, suppose for contradiction that a node u corresponding to a string
s has only one child v corresponding to s0. Since a codeword is a leaf in the subtree rooted at u iff it
has s, and hence also s0 as a prefix, replacing s0 by s in all these codewords gives a better encoding.
However, this is a contradiction since we assumed our encoding to be minimal.

5.30 We first prove that if the number of symbols is odd then the encoding must correspond to a full ternary
tree. We then make the number of symbols odd by adding a symbol with frequency 0 if needed. Once
it is guaranteed that the optimal tree is full, we can simply proceed as in the binary case combining the
three nodes with least frequencies at every step to form a single node. Since this reduces the number
of nodes by 2, it still remains odd and we can carry on.
Suppose now that the number of symbols is odd and some non-leaf node u in the optimal tree does not
have three children. Without loss of generality, we can assume that all children of u are leaves (else we
can remove a leaf attached to some other node and add it as a child of u) and that u has two children
(else we can delete its only child getting a better code).
Removing all children of nodes (say u1, . . . , uk) which have two children, gives a full ternary tree. A
full ternary tree can be built by always adding 3 children to some existent leaf and hence must have
an odd number of leaves, since we started with just the root and the number of leaves increased by
two at each step. Now, adding the children of u1, . . . , uk adds k more leaves (removes k and adds 2k).
Since the final number of leaves must still be odd, k must be even. We can then pair up u1, . . . , uk

and transfer children between the pair so that half of them have 3 children, while the other half has 1
each. For each node u having only one child leaf v, we can now delete v getting a better code, which
is a contradiction.

5.31 The algorithm in the chapter minimizes the sum
∑

i fili. To minimize
∑

i cifili, we simply treat fici

as the frequency of the ith word.

5.32 We simply proceed by a greedy strategy, by sorting the customers in the increasing order of service
times and servicing them in this order. The running time is O(n log n). To prove the correctness, for
any ordering of the customers, let s(j) denote the jth customer in the ordering. Then

T =
n∑

i=1

i−1∑
j=1

ts(j) =
n∑

i=1

(n− i)ts(i)



8

For any ordering, if ts(i) > ts(j) for i < j, then swapping the positions of the two customers gives a
better ordering. Since, we can generate all possible orderings by swaps, an ordering which has the
property that ts(1) ≤ . . . ≤ ts(n) must be the global optimum. However, this is exactly the ordering we
output.

5.33 We create a graph with a node for every variable. Also, for every implication, say (x ∧ y ∧ z) =⇒ w,
we add the directed edges (x, w), (y, w) and (z, w). With the edges, we also store which clause they
belong to. Finally, at each variable we store a counter corresponding each clause in which appears,
which is initially set to the number of variables on the LHS of the implication.

We start with assigning the value false to all the variables and then making some true as required by
the implications. For each variable that is set to true, we decrement the counters of all its neighbors
corresponding to the respective clauses. Any variable for which the counter corresponding to any clause
becomes zero, is added to a list L, which contains the variable to be set to true. The list L starts with
variables which start with counters zero i.e. clauses of the form (x).

5.34 Consider the base set U = {1, 2, . . . , 2k} for some k ≥ 2. Let T1 = {1, 3, . . . , 2k − 1} and T2 =
{2, 4, . . . , 2k}. These two sets comprise an optimal cover. We add sets S1, . . . , Sk−1 by defining li =
2 +

∑i
j=1 2k−j and letting Si = {li−1 + 1, . . . , li} (take l0 = 0).

Thus, S1 contains 2k−1 + 2 elements and the greedy algorithm picks this first. After the algorithm has
picked i sets, each of T1 and T2 covers 2k−i−1−1 new elements while Si+1 covers 2k−i−1 new elements.
Hence, the algorithm picks the cover S1, . . . , Sk−1 containing k − 1 = log n− 1 sets.

T

T

S S ...

1

2

S 31 2

Optimal
Cover

Cover picked by the algorithm

S4 S5

5.35 Since the algorithm in the box titled “A randomized algorithm for minimum cut” produces every
minimum cut with probability at least 1

n(n−1) and the probabilities must sum to 1, the number of
minimum cuts is at most n(n− 1).


