
Chapter 4 – Solutions

2

4.1. The shortest path tree is shown in Figure 1.

Iteration
Node 0 1 2 3 4 5 6 7

A 0 0 0 0 0 0 0 0
B ∞ 1 1 1 1 1 1 1
C ∞ ∞ 3 3 3 3 3 3
D ∞ ∞ ∞ 4 4 4 4 4
E ∞ 4 4 4 4 4 4 4
F ∞ 8 7 7 7 7 6 6
G ∞ ∞ 7 5 5 5 5 5
H ∞ ∞ ∞ ∞ 8 8 6 6

Figure 1: Shortest-path tree for 4.1.

4.2. The shortest path tree is shown in Figure 2.

Iteration
Node 0 1 2 3 4 5 6

S 0 0 0 0 0 0 0
A ∞ 7 7 7 7 7 7
B ∞ ∞ 11 11 11 11 11
C ∞ 6 5 5 5 5 5
D ∞ ∞ 8 7 7 7 7
E ∞ 6 6 6 6 6 6
F ∞ 5 4 4 4 4 4
G ∞ ∞ ∞ 9 8 8 8
H ∞ ∞ 9 7 7 7 7
I ∞ ∞ ∞ ∞ 8 7 7

4.3. Suppose the input graph G is given as an adjacency matrix. Notice that G contains a square if and
only if there are two vertices u and v that share more than one neighbor. For any u, v we can check
this in time O(|V |) by comparing the row of u and the row of v in the adjacency matrix of G. Because
we need to repeat this process O(|V |2) to iterate over all u and v, this algorithm has running time
O(|V |3). We can do better by noticing that, when comparing the rows of the adjacency matrix au

and av, we are actually checking if au · av is greater than 1, i.e. if [A(G)2]uv > 1. It suffices then to

3

Figure 2: Shortest-path tree for 4.2.

compute A(G), which we can do in time O(|V |2.71 using our matrix multiplication algorithm and check
all non-diagonal entries to see if we find one larger than 1.

4.4. The graph in Figure 3 is a counterexample: vertices are labelled with their level in the DFS tree, back
edges are dashed. The shortest cycle consists of vertices 1−4−5, but the cycle found by the algorithm
is 1−2−3−4. In general, the strategy will fail if the shortest cycle contains more than one back edge.

21 3 4 5

Figure 3: Counterexample for 4.4.

4.5 We perform a BFS on the graph starting from u, and create a variable num paths(x) for the number
of paths from u to x, for all vertices x. If x1, x2, . . . xk are vertices at depth l in the BFS tree and
x is a vertex at depth l + 1 such that (x1, x), . . . , (xk, x) ∈ E then we want to set num paths(x) =
num paths(x1)+. . .+num paths(xk). The easiest way to do this is to start with numpaths(x) = 0 for all
vertices x 6= u and num paths(u) = 1. We then update num paths(y) = num paths(y) + num paths(x),
for each edge (x, y) that goes down one level in the tree. Since, we only modify BFS to do one extra
operation per edge, this takes linear time. The pseudocode is as follows
function count paths(G, u, v)

for all x ∈ V :

dist(x) = ∞
num paths(x) = 0

dist(u) = 0
num paths(u) = 1

Q = [u]
while Q is not empty:

x = eject(Q)

for all edges (x, y) ∈ E
if dist(y) = dist(x) + 1:

4

num paths(y) = num paths(y) + num paths(x)
if dist(y) = ∞:

inject(Q,y)
dist(y) = dist(x) + 1

num paths(y) = num paths(x)

4.6. This is true as long as every node u ∈ V is reachable from s, the node from which Dijkstra’s algorithm
was run. In this case, every node is connected to s through a shortest path consisting of edges of the
type {u, prev(u)} and the graph formed by all these edges is connected. Moreover, such graph cannot
have cycles, because {u, prev(u)} can be an edge only if prev(u) was deleted off the heap before u, so
that a cycle would lead to a contradiction.

4.7. Let we be the weight of edge e. Let dT (u, v) be the distance between u and v along the edges of T .
This can be computed in linear time by either BFS or DFS. For any edge (u, v) = e ∈ E − E′, i.e.
every e not belonging to the tree, check that

w(u,v) + dT (s, u) ≥ dT (s, v)

This will succeed for all e ∈ E −E′ if and only if T is a correct shortest path tree from s. We proceed
to prove this.

If T is a correct shortest path tree dT (s, v) = dG(s, v) and hence w(u,v) + dT (s, u) ≥ dT (s, v) or the
path through (u, v) would be shorter. If T is not a correct shortest path, consider a run of the Bellman
Ford algorithm for shortest paths starting at s. Consider the first update update(u, v) causing the
distance of v to drop below dT (s, v). Let du be the distance label of u at the moment of that update.
As this was the first update contradicting dT , it must be the case that dT (s, u) ≤ du. Then, we have
dT (s, u) + w(u,v) ≤ du + w(u,v) < dT (s, v), by construction. Hence, our algorithm will detect such edge
(u, v) and correctly recognize T as an invalid shortest path tree from s.

4.8. The weighted graph in Figure 4 is a counterexample: According to the algorithm proposed by Professor

−1−1

−3

u v w

Figure 4: Counterexample for 4.8.

Lake we should add +4 to the weight of each edge. Then, the shortest path between u and w would
be the edge (u,w) of weight 1. However, the shortest path in the original graph was u − v − w.

4.9. As stated the answer is negative, because there could be a negative cycle involving s. However, it
is more interesting to ask what happens in no such cycle exists. In this case, Dijkstra’s algorithm
works. Consider the proof of Dijkstra’s algorithm. The proof depended on the fact that if we know
the shortest paths for a subset S ⊆ V of vertices, and if (u, v) is an edge going out of S such that v
has the minimum estimate of distance from s among the vertices in V \ S, then the shortest path to
v consists of the (known) path to u and the edge (u, v). We can argue that this still holds even if the
edges going out of the vertex s are allowed to negative. Let (u, v) be the edge out of S as described
above. For the sake of contradiction, assume that the path claimed above is not the shortest path to v.
Then there must be some other path from s to v which is shorter. Since s ∈ S and v /∈ S, there must
be some edge (i, j) in this path such that i ∈ S and j /∈ S. But then, the distance from s to j along
this path must be greater than that the estimate of v, since v had the minimum estimate. Also, the
edges on the path between j and v must all have non-negative weights since the only negative edges

5

are the ones out of s. Hence, the distance along this path from s to v must be greater than the the
estimate of v, which leads to a contradiction.

4.10. Perform k rounds of the update procedure on all edges.

4.11. Define matrix D so that Dij is the length of the shortest path from vertex i to vertex j in the input
graph. Row i of the matrix can be computed by a run of Dijkstra’s algorithm in time O(|V |2). So we
can calculate all of D in time O(|V |3). For any pair of vertices u, v we know that there is a cycle of
length Duv+Dvu consisting of the two shortest paths between u and v and that this cycle is the shortest
among cycles containing u and v. This shows that it suffices to compute the minimum Duv +Dvu over
all pairs of vertices u, v to find the length of the shortest cycle. This last operation takes time O(|V |2),
so the overall running time is O(|V |3).

4.12. Let u and v be the end vertices of e. Using Dijkstra’s algorithm, compute shortest path lengths from u
and v to all other vertices in G− e, the graph obtained removing edge e from G. Let du(x) and dv(x)
respectively denote the shortest path length from u and v to node x in this graph. For any node x,
there exists then a cycle of size at most du(x) + dv(x) + 1 containing e in G: this cycle consists of the
non-overlapping parts of the shortest paths from u and v to x and of edge e. Moreover, if x belongs
to the shortest cycle C containing e, du(x) + dv(x) + 1 must be the length of C or a shorter cycle will
exist. This shows that the length of C is the minimum over all x of du(x) + dv(x) + 1, which can be
calculated in time O(|V |). Hence, the overall running time is O(|V |2) given by the two initial runs of
Dijkstra’s algorithm.

4.13. a) This can be done by performing DFS from s ignoring edges of weight larger than L.

b) This can be achieved by a simple modification of Dijkstra’s algorithm. We redefine the distance
from s to t to be the minimum over all paths p from s to u of the maximum length edge over all
edges of p. Compare this with the original definition of distance, i.e. the minimum over all p of
the sum of lengths of edges in p. This comparison suggests that by modifying the way distances
are updated in Dijkstra we can produce a new version of the algorithm for the modified problem.
It is sufficient to change the final loop to:

while H is not empty:

u = deletemin(H)

for all edges (u, v) ∈ E:

if dist(v) > max(dist(u), l(u, v))
dist(v) = max(dist(u), l(u, v))
prev(v) = u

decreasekey(H,v)

When implemented with a binary heap, this algorithm achieves the required running time.

4.14. Let P be shortest path from vertex u to v passing through v0. Note that, between v0 and v, P must
necessarily follow the shortest path from v0 to v. By the same reasoning, between u and v0, P must
follow the shortest path from v0 and u in the reverse graph. Both these paths are guaranteed to exist
as the graph is strongly connected. Hence, the shortest path from u to v through v0 can be computed
for all pairs u, v by performing two runs on Dijkstra’s algorithm from v0, one on the input graph G
and the other on the reverse of G. The running time is dominated by looking up all the O(|V 2|) pairs
of distances.

4.15. This can be done by slightly modifying Dijkstra’s algorithm in Figure 4.8. The array usp[·] is initialized
to true in the initialization loop. The main loop is modified as follows:

while H is not empty:

u = deletemin(H)
for all edges (u, v) ∈ E:

6

if dist(v) > dist(u) + l(u, v):
dist(v) = dist(u) + l(u, v)
usp(v) = usp(u)
decreasekey(H, v)

if dist(v) = dist(u) + l(u, v):
usp(v) = false

This will run in the required time when the heap is implemented as a binary heap.

4.16. a) If the node at position j is the ith node on the kth level of the binary tree we have j = 2k + i− 1.
Its parent will then be the ⌈ i

2⌉th node on the (k − 1)th level of the tree and will be found in

position 2k−1 + ⌈ i
2⌉ − 1 = 2k−1 +

⌊

i−1
2

⌋

=
⌊

j
2

⌋

. Its children will be the 2i − 1th and 2ith nodes
on the (k + 1)th level of the tree. Hence, they will be stored in positions 2k+1 + 2i − 2 = 2j and
2k+1 + 2i − 1 = 2j + 1.

b) By the same reasoning as above, the parent of the node at position j will be at position ⌈ j−1
d

⌉,
while the children will be at position dj + 1, dj, dj − 1, · · · , dj − (d − 2).

c) The procedure siftdown places element x at position i of h and rearranges the heap by letting
x ”‘sift down”’ until both its children have values greater than x. This is done by iteratively
swapping x with the minimum of its children and takes at most time proportional to the height
of the subtree rooted at i. The height of the whole tree is log n, as there are n nodes in the heap,
and the depth of node i is log i, so that the subtree rooted at i has depth log n − log i = log

(

n
i

)

.
Because makeheap calls siftdown at all nodes in the tree, makeheap will take time:

n
∑

i=1

log
(n

i

)

= log
nn

n!

By Stirling’s formula (see page 53), n! ≥
(

n
e

)n
, so:

log

(

nn

n!

)

≤ log(en) = O(n)

d) In procedure bubbleup, p must be assigned to the index of the parent node of i, for which we
gave the formula in b). In minchild, the minimum must be taken over all children of node i, the
indices of which we gave in b).

4.17. a) Because every edge has length {0, · · · ,W}, all dist values will be in the range {0, 1, · · · ,W (|V |−
1),∞}, as any shortest path contains at most |V | − 1 edges. Hence, we can implement the heap
on the dist values by mantaining an array of size W (|V | − 1) + 2 indexed by all possible values
of dist, where each entry i is a pointer to a linked list of elements having dist value equal
to i. With this implementation, we can perform insert operations in constant time, simply by
appending the element at the beginning of the linked list corresponding to its value. So, makeheap
will take time O(|V |). Because during a run of Dijkstra’s algorithm the minimum value on the
heap is increasing, when we perform a deletemin operation we do not need to scan the whole
array, but can start looking for the new minimum at the previous minimum value. This implies
that, in scanning for the minimum element, we look at each array entry at most once, so that
all the deletemin operations take time O(W |V |). Finally, the decreasekey operation can be
implemented by inserting a new copy of the element into the list corresponding to its new value,
without removing the previous copies. This means that, when performing deletemin operations,
we need to check whether the current minimum is a copy of an element already processed and,
in that case, ignore it. But, because there at most |E| decreasekey operations, there are at
most |E| copies we need to ignore and we only pay a penalty of time O(|E|). Moreover, in
this way, each decreasekey takes time O(1), so that all decreasekey operations take time
O(|E|). This shows that the running time of Dijkstra’s algorithm with this implementation is
O(|V |) + O(W |V |) + O(|E|) = O(W |V | + |E|).

7

b) The key observation is that there are at most W + 2 distinct dist values in the heap at any one
time, namely ∞ or any integer between Min (the current smallest value in the heap) and Min+W .
We can now implement the heap using a binary heap with at most W + 2 leaf nodes, where keys
are possible dist value (including ∞), and the value associated with the key is a linked list that
contains all nodes with that dist value. We need to make a few modifications to Dijkstra’s
algorithm. When we update a node’s dist value to j, we simply append this node to the linked
list at the key value j (again, we do not remove the node from the linked list corresponding to
the old dist value). If we take out a node v during deleteMin that has been processed, we
simply ignore the node and move on. We can do now deletemin and insert in O(log W) time,
since the heap has at most W + 2 children at any one time. We also perform at most |V | + |E|
deletemin’s and at most |V | + |E| insert’s, hence the total running time of the algorithm is
O((|V | + |E|) log W).

4.18. This is another simple variation of Dijkstra’s algorithm of Figure 4.8. In the initialization loop, best(s)
is set to 0 and all other entries of best are set to ∞. The main loop is modified as follows:

while H is not empty:

u = deletemin(H)
for all edges (u, v) ∈ E:

if dist(v) > dist(u) + l(u, v):
dist(v) = dist(u) + l(u, v)
best(v) = best(u) + 1
decreasekey(H, v)

if dist(v) = dist(u) + l(u, v):
if best(v) < best(u) + 1:

best(v) = best(u) + 1

This has the same asymptotic running time as the original Dijkstra’s algorithm, as the additional
operations in the loop take constant time.

4.19. There are two approaches: one is a reduction; the other is a direct modification of Dijkstra’s algorithm.

Method I: The idea is to use a reduction: on input (G, l, c, s), we construct a graph G′ = (V ′, E′)
where G only has edge weights (no node weights), so that the shortest path from s to t in G is essentially
the same as that in G′, with some minor modifications. We can then compute shortest paths in G′

using Dijkstra’s algorithm.

The reduction works by taking every vertex v of G and splitting it into two vertices vi and vo. All
edges coming into v now come into vi, while all edges going out of v now go out of vo. Finally, we add
an edge from vi to vo of weight c(v).

v
reduction

vi vo

c(v)

Figure 5: Reduction in 4.19.

Consider now any path in G and notice that it can be converted to an edge-weighted path of the
same weight in G′ by replacing the visit to vertex v with the traversal of edge (vo, vi). Conversely,

8

consider a path in G′: every other edge visited is of the form (vi, vo) and corresponds to a vertex v of
G. Replacing these edges with the corresponding vertices we obtain a path in G of the same weight as
the path in G′. The time required to perform this reduction is O(|V | + |E|). G′ has |V | + |E| edges
and 2|V | vertices, so running Dijkstra takes time O(|V |2) and the total running time is O(|V |2).

Method II: We make the following modifications to Dijkstra’s algorithm to take into account node
weights:

– In the initialization phase, dist(s) = w(s).

– In the update phase, we use dist(u) + l(u, v) + w(v) instead of dist(u) + l(u, v).

Analysis of correctness and running time are exactly the same as in Dijkstra’s algorithm.

4.20. G is an undirected graph with edge weights le. If the distance between s and t decreases with the
addition of e′ = (u, v), the new shortest path from s to t will be the concatenation of the shortest path
from s to u, the edge (u, v) and the shortest path from v to t. But we can then compute the length
of this path by running Dijkstra’s algorithm once from s and once from t in G. With all the shortest
path distances from s and t in G, we can compute in constant time the length of the shortest path
from s to t going through e′ for any e′ ∈ E′. The shortest of these paths will give us the best edge to
add and its length will tell us what improvement the addition brings, if any. The running time of this
algorithm is O(|V |2 + |E′|).

4.21. a) Represent the currencies as the vertex set V of a complete directed graph G. To find the most
advantageous ways to converts cs into ct, you need to find the path ci1 , ci2 , · · · , cik

maximizing

the product ri1,i2ri2,i3 · · · · ·rik−1,ik
. This is equivalent to minimizing the sum

∑k−1
j=1 (− log rij ,ij+1

).
Hence, it is sufficient to find a shortest path in the graph G with weights wij = − log rij . Because
these weights can be negative, we apply the Bellman-Ford algorithm for shortest paths to the
graph , taking s as origin.

b) Just iterate the updating procedure once more after |E||V | rounds. If any distance is updated,

a negative cycle is guaranteed to exist, i.e. a cycle with
∑k−1

j=1 (− log rij ,ij+1
) < 0, which implies

∏k−1
j=1 rij ,ij+1

> 1, as required.

4.22. a) Let C be the negative cycle, E(C) the set of edges of C, V (C) the set of vertices. Then:

∑

e∈E(C)

we = r
∑

e∈E(C)

ce −
∑

v∈V (C)

pv < 0

This shows that
∑

v∈V (C) pv
∑

e∈E(C) ce
> r, so that r < r∗.

b) The same argument as in a) yields that all cycles have ratio less than r, so that r > r∗.

c) We can use Bellman-Ford to detect negative cycles, so, for any r, we can check in time O(|V ||E|)
whether r is smaller or greater than r∗. We can then perform a binary search for r∗ on the interval
[0, R]. After log

(

R
ǫ

)

rounds of binary search, our lower bound r′ on r∗ will be at most ǫ smaller
than r∗, i.e. r′ ≥ r∗ − ǫ. Consider now the weighted graph Gr′ obtained by setting the weights as
above with r = r′. Because r′ < r∗, the optimal cycle C∗ with ratio r∗ will appear as a negative
cycle in Gr′ . Hence, when we run Bellman-Ford on Gr′ , it will detect some negative cycle C
(notice C is not necessarily equal to C∗). Then, by a), the profit-cost ratio of C will be greater
than r′, i.e. r(C) > r′ ≥ r∗ − ǫ. This algorithm requires log

(

R
ǫ

)

+ 1 runs on Bellman-Ford on

different weighted versions of G. Its total running time is then O(log
(

R
ǫ

)

|V ||E|).

