
Chapter 3 – Solutions

2

3.1 The figure below gives the pre and post numbers of the vertices in parentheses. The tree and back
edges are marked as indicated.

A B C

D E F

G H I

(1,12) (2,11) (3,10)

(4,9)

(7,8)
(15,16)(14,17)

(13,18) (5,6)

Tree Edge

Back Edge

3.2 The figure below shows pre and post numbers for the vertices in parentheses. Different edges are
marked as indicated.

A B

C

D

EF

G

H

(1,16)
(2,11)

(4,5)

(7,8)
(3,10)

(13,16)

(12,15)

(6,9)

Tree Edge

Cross Edge

Back Edge

Forward Edge

A B C

DE

F G H

(1,16) (2,15) (3,14)

(4,13)

(5,12)(6,11)(7,10)

(8,9)

(a) (b)

3.3 (a) The figure below shows the pre and post times in parentheses.

(1,14)

(15,16)

(2,13)

(3,10)

(11,12)

(4,9)

(5,6)

(7,8)

A

B

C

D

E

F

G

H

(b) The vertices A,B are sources and G, H are sinks.
(c) Since the algorithm outputs vertices in decreasing order of post numbers, the ordering given is

B,A, C, E, D, F,H, G.
(d) Any ordering of the graph must be of the form {A,B}, C, {D,E}, F, {G, H}, where {A,B} indi-

cates A and B may be in any order within these two places. Hence the total number of orderings
is 23 = 8.

3.4 (i) The strongly connected component found first is {C,D,F,G,H, I, J} followed by {A,B,E}.
{C,D,F,G,H, I, J} is a source SCC, while {A,B,E} is a sink SCC. The metagraph is shown
in the figure below. It is easy to see that adding 1 edge from any vertex in the sink SCC to a
vertex in the source SCC makes the graph strongly connected.

(ii) The strongly connected components are found in the order {D,F,G,H, I}, {C}, {A,B,E}.
{A,B,E} is a source SCC, while {D,F,G, H, I} is a sink. Also, in this case adding one edge
from any vertex in the sink SCC to any vertex in the source SCC makes the metagraph strongly
connected and hence the given graph also becomes strongly connected.

3

A,B,E C,D,F,G,
H,I,J

A,B,E

D,F,G,
H,I

C

3.5 Create a new (empty) adjacency list for the reverse. We go through the list of G and if in the
neighborhood of u, we find the vertex v, add u in the list of v in GR as the first element in the list.
Note that it would have been difficult to insert u at the end of the list, but insertion in the first position
takes only O(1) time.

3.6 (a) Note that each edge (u, v) contributes 1 to d(u) and 1 to d(v). Hence, each edge contributes
exactly 2 to the sum

∑
v∈V d(v), which gives

∑
v∈V d(v) = 2|E|.

(b) Let Vo be the set of vertices with odd degree and Ve be the set of vertices with even degree. Then∑
v∈Vo

d(v) +
∑
v∈Ve

d(v) = 2|E| =⇒
∑
v∈Vo

d(v) = 2|E| −
∑
v∈Ve

d(v)

The RHS of this equation is even and the LHS is a sum of odd numbers. A sum of odd numbers
can be even, only if it is the sum of an even number of odd numbers. Hence, the number of vertices
in Vo (equal to the number of people with odd number of handshakes) must be even.

(c) No. The following graph provides a counter-example as only one vertex (B) has odd indegree.

A B

3.7 (a) Let us identify the sets V1 and V2 with the colors red and blue. We perform a DFS on the
graph and color alternate levels of the DFS tree as red and blue (clearly they must have different
colors). Then the graph is bipartite iff there is no monochromatic edge. This can be checked
during DFS itself as such an edge must be a back-edge, since tree edges are never monochromatic
by construction and DFS on undirected graphs produces only tree and back edges.

(b) The “only if” part is trivial since an odd cycle cannot be colored by two colors. To prove the “if”
direction, consider the run of the above algorithm on a graph which is not bipartite. Let u and v
be two vertices such that (u, v) is a monochromatic back-edge and u is an ancestor of v. The path
length from u to v in the tree must be even, since they have the same color. This path, along
with the back-edge, gives an odd cycle.

(c) If a graph has exactly one odd cycle, it can be colored by 3 colors. To obtain a 3-coloring, delete
one edge from the odd cycle. The resulting graph has no odd cycles and can be 2-colored. We
now add back the deleted edge and assign a new (third) color to one of its end points.

3.8 (a) Let G = (V,E) be our (directed) graph. We will model the set of nodes as triples of numbers
(a0, a1, a2) where the following relationships hold: Let S0 = 10, S1 = 7,S2 = 4 be the sizes of the
corresponding containers. ai will correspond at the actual contents of the ith container. It must
hold 0 ≤ ai ≤ Si for i = 0, 1, 2 and at any given node a0 + a1 + a2 = 11 (the total amount of
water we started from). An edge between two nodes (a0, a1, a2) and (b0, b1, b2) exists if both the
following are satisfied :

– the two nodes differ in exactly two coordinates (and the third one is the same in both).

4

– if i, j are the coordinates they differ in, then either ai = 0 or aj = 0 or ai = Si or aj = Sj .

The question that needs to be answered is wether there exists a path between the nodes (0, 7, 4)
and (∗, 2, ∗) or (∗, ∗, 2) where ∗ stands for any (allowed) value of the corresponding coordinate.

(b) Given the above description, it is easy to see that a DFS algorithm on that graph should be
applied, starting from node (0, 7, 4) with an extra line of code that halts and answers ’YES’ if one
of the desired nodes is reached and ’NO’ if all the connected component of the starting node is
exhausted an no desired vertex is reached.

(c) It is easy to see that after a few steps of the algorithm (depth 6 on the dfs tree) the node (2,7,2)
is reached, so we answer ‘YES’.

3.9 First, the degree of each node can be determined by counting the number of elements in its adjacency
list. The array twodegree can then be computed by initializing twodegree to 0 for every vertex, and
then modifying explore as follows to add the degree of each neighbor of a vertex u to twodegree[u].

explore(G, u) {
visited(u) = true
previsit(u)
for each edge (u, v) ∈ E:

twodegree[u] = twodegree[u] + degree[v]
if not visited(v): explore(v)

postvisit(u)
}

3.10 We use an extra variable top which refers to the top element in the stack. We assume that top is
automatically updated when some element is pushed or popped. Also, we need to keep track of how
many neighbors of a vertex have been already checked. For this we also need the outdegree of every
vertex (which is part of the adjacency list). We assume that neighbor(v, i) gives the ith neighbor of
the vertex v1.

The code for the explore function is as follows:
explore(G, u) {

visited(u) = true
previsit(u)
neighbors checked(u) = 0
push u
while stack is not empty {

w = top
for i from neighbors checked[w]+1 to outdegree[w] {

v = neighbor(w, i)
if not visited(v)

neighbors checked[w] = i
push(v)
break

}
if neighbors checked[w] = outdegree[w]

pop(w)
postvisit(w)

}
}

3.11 Let e = (u, v). The graph has a cycle containing e if and only if u and v are in the same connected
component in the graph obtained by deleting e. This can be easily checked by a DFS on this graph.

1We have a list and cannot actually access the ith neighbor, but i changes sequentially in the loop here and hence we allow
ourselves some abuse of notation.

5

3.12 There are two cases possible: pre(u) < pre(v) < post(v) < post(u) or pre(v) < post(v) < pre(u) <
post(u). In the first case, u is an ancestor of v. In the second case, v was popped off the stack without
looking at u. However, since there is an edge between them and we look at all neighbors of v, this
cannot happen. So, the given statement is true.

3.13 (a) Consider the DFS tree of G starting at any vertex. If we remove a leaf (say v) from this tree, we
still get a tree which is a connected subgraph of the graph obtained by removing v. Hence, the
graph remains connected on removing v.

(b) A directed cycle. Removing any vertex from a cycle leaves a path which is not strongly connected.

(c) A graph consisting of two disjoint cycles. Each cycle is individually a strongly connected com-
ponent. However, adding just one edge is not enough as it (at most) allows us to go from one
component to another but not back.

3.14 The algorithm is to always pick a source, delete it from the graph and then recurse on the resulting
graph. A source is just a vertex with indegree 0. Thus, we can find all the sources in the initial graph
by performing a DFS and computing the indegree of all the vertices. We add all the vertices with
indegree 0 to a list L.

At each step, the algorithm then removes an element from L (a source) and reduces the indegree of
each of its neighbors by 1 (this corresponds to deleting it from the graph). If this changes the indegree
of any vertex to 0, we add it to L. The removed element is assigned the next position in the ordering.

Computing all indegrees in the first step only requires a DFS which takes linear time. Subsequently,
we only look at each edge (u, v) at most once when we are removing u from L. Hence, the total time
is linear in the size of the graph.

3.15 (a) We view the intersections as vertices of a graph with the streets being directed edges, since they
are one-way. Then the claim is equivalent to saying that this graph is strongly connected. This
is true iff the graph has only one strongly connected component, which can be checked in linear
time.

(b) The claim says that starting from the town hall, one cannot get to any other SCC in the graph.
This is equivalent to saying that the SCC containing the vertex corresponding to the town hall
is a sink component. This can be easily done in linear time by first finding the components, and
then running another DFS from the vertex corresponding to the town hall, to check if any edges
go out of the component2.

3.16 The graph of the prerequisite relation must be a DAG, since there can be no circular dependencies
between courses. The number of courses essentially corresponds to the length of the longest path in
this DAG.

We first linearize this graph to obtain an ordering c1, c2, . . . , cn of the courses, such that ci is a possibly
a prerequisite only for cj with j > i. Any path ending at cj can now only pass through ci for i < j. If
lj is the length of the longest path ending at cj , then

lj = 1 + max
(i,j)∈E

{li}

which depends only on li for i < j. The required solution is maxi{li}. This is essentially a use of
dynamic programming.

Note however, that here we need all edges coming into cj rather going out, which is what the adjacency
list stores. This can be handled by computing the reverse of the graph (see problem 3.5 - in fact, it is
even easier for a linearized DAG) or by modifying the algorithm above so that each ci “updates” the
maximum value at its neighbors, when it computes its own li value.

2In fact, it can even be done while decomposing the graph into SCCs by noting that the algorithm for decomposing progres-
sively removes sinks from the graph at every stage. A component found by the algorithm is a sink if and only if there are no
edges going out of the component into any component found before it.

6

3.17 (a) For the sake of contradiction, assume that there are two different vertices u, v ∈ Inf(p) such that
u and v belong to different strongly connected components, say C1 and C2 respectively. But since
u occurs both before and after v in the trace, there must be a path from u to v and also a path
from v to u. This would imply that there is a path from every vertex in C1 to every vertex in C2

and vice-versa, which is a contradiction.

(b) The argument in the previous part shows that any infinite trace must be a subset of a strongly
connected component. It is also easy to see that any strongly connected component of size greater
than 1 has an infinite trace since we can always pick two vertices in the same component and go
from one to another infinitely often.
However, a graph that has all SCCs of size 1 must be a DAG and hence the problem reduces to
checking if the given directed graph has a cycle. This can be done using DFS since the graph has
a cycle if and only if DFS finds a back edge.

(c) Let v ∈ Inf(p) be a good vertex visited infinitely often by the trace p. Also, there must be at
least one more vertex in the component of v for the trace to be infinite. Hence, the problem
reduces to checking if the graph contains a strongly connected component of size more than 1,
which contains a good vertex. This can be done by decomposing the graph into its SCCs.

(d) Let p be a trace such that Inf(p) ⊆ VG. Then there must exist a number N such that vn ∈ VG

for all n ≥ N (since no bad vertex is visited infinitely often). Then Inf(p) must itself form a
strongly connected subgraph since after time N , the trace does not take any path passing through
a bad vertex. Hence, a graph contains an infinite trace which visits only good vertices infinitely
often if and only if the subgraph induced by VG contains a strongly connected component of size
greater than 1 (We argued only the “only if” part above, but the other direction is trivial). This
can be checked by proceeding as in part (b) with the subgraph induced by VG.

3.18 Do a DFS on the tree starting from r and store the previsit and postvisit times for each node. Since
the given graph is a tree, and we started at the root, the DFS tree is the same as the given tree. Thus,
u is an ancestor of v if and only if pre(u) < pre(v) < post(v) < post(u).

3.19 We modify the explore procedure so that explore called on a node returns the maximum x value in the
corresponding subtree. The parent stores this as its z value, and returns the maximum of this and its
own x value.

explore(G, u) {
visited(u) = true
z(u) = −∞
temp = 0
for each edge (u, v) ∈ E:

If not visited(v): {
temp = explore(G, v)
if temp > z(u): z(u) = temp

}
postvisit(u)
return max{z(u), x(u)}

}

3.20 We maintain the labels of all the vertices currently on the stack, in a a separate array. Since a path
can have at most n vertices, the length of this array is at most n. The labels are modified using this
array in the previsit and postvisit procedures.

– previsit(v) {
current depth = current depth + 1
labels[current depth] = l(v)

}
– postvisit(v){

ancestor depth = max{0, current depth - l(v)}

7

l(v) = labels[ancestor depth]
current depth = current depth - 1

}

ancestor depth identifies the level at which pl(v) is present in the path and stores the appropriate
label in the current node. Since we add only a constant number of operations at each step of DFS, the
algorithm is still linear time.

3.21 Consider the case of a strongly connected graph first. The case of a general graph can be handled by
breaking it into its strongly connected components, since a cycle can only be present in a single SCC.
We proceed by coloring alternate levels of the DFS tree as red and blue. We claim that the graph
has an odd cycle if and only if there is an edge between two vertices of the same color (which can be
checked in linear time).

If there is an odd cycle, it cannot be two colored and hence there must be a monochromatic edge. For
the other direction, let u and v be two vertices having the same color and let (u, v) be an edge. Also,
let w be their lowest common ancestor in the tree. Since u and v have the same color, the distances
from w to u and v are either both odd or both even. This gives two paths p1 and p2 from w to v, one
through u and one not passing through u, one of which is odd and the other is even.

Since the graph is strongly connected, there must also be a path q from v to w. Since the length of this
path is either odd or even, q along with one of p1 and p2 will give an odd length tour (a cycle which
might visit a vertex multiple times) passing through both v and w. Starting from v, we progressively
break the tour into cycles whenever it intersects itself. Since the length of the tour is odd, one of these
cycles must have odd length (as the sum of their lengths is the length of the tour).

3.22 Let us call a vertex from which all other vertices are reachable, a vista vertex. If the graph has a vista
vertex, then it must have only one source SCC (since two source SCCs are not reachable from each
other), which must contain the vista vertex (if it’s in any other SCC, there is no path from the vista
vertex to the source SCC). Moreover, in this case every vertex in the source SCC will be a vista vertex.

The algorithm is then simply to a DFS starting from any node and mark the vertex with the highest
post value. This must be in a source SCC. We now again run a DFS from this vertex to check if we
can reach all nodes. Since the algorithm just uses decomposition into SCCs and DFS, the running time
is linear.

3.23 We start by linearizing the DAG. Any path from s to t can only pass through vertices between s and
t in the linearized order and hence we can ignore the other vertices.

Let s = v0, v1, . . . , vk = t be the vertices from s to t in the linearized order. For each i, we count the
number of paths from s to vi as ni. Each path to a vertex i and an edge (i, j), gives a path the vertex
j and hence

nj =
∑

(i,j)∈E

ni

Since i < j for all (i, j) ∈ E, this can be computed in increasing order of j. The required answer is nk.

3.24 Start by linearizing the DAG. Since the edges can only go in the increasing direction in the linearized
order, and the required path must touch all the vertices, we simply check if the DAG has an edge (i, i+1)
for every pair of consecutive vertices labelled i and i + 1 in the linearized order. Both, linearization
and checking outgoing edges from every vertex, take linear time and hence the total running time is
linear.

3.25 Start by linearizing the DAG. Let v1, . . . vn be the linearized order. Then the following algorithm finds
the cost array in linear time.
find costs() {

for i = n to 1:
cost[vi] = pvi

for all (vi, vj) ∈ E:

8

if cost[vj] < cost[vi]:
cost[vi] = cost[vj]

}
The time for linearizing a DAG is linear. For the above procedure, we visit each edge at most once and
hence the time is linear. For a general graph, the cost value of any two nodes in the same strongly
connected component will be the same since both are reachable from each other. Hence, it is sufficient
to run the above algorithm on the DAG of the strongly connected components of the graph. For a
node corresponding to component C, we take pC = minu∈C{pu}.

3.26 (a) We first prove the “only if” direction. Suppose we have an Eulerian tour for a graph G. Let u be
any vertex in the graph. Suppose that we “enter” u k times during the tour. Since it is a cycle,
we must also leave u exactly k times and all these edges must be distinct. Hence, the degree of u
must be 2k which is even. Since this is true for any vertex u, the claim follows.
For the other direction we use induction on the number of vertices in the graph. First note that
if |V | = 2, the trivially if the degree of both the vertices is even then the graph has an Eulerian
tour. Let the statement be true for all graphs with |V | = n.
We consider a graph G on n + 1 vertices such that all its vertices have even degrees. Let u be
a vertex in this graph having neighbors i1, i2, . . . i2k. Consider a graph G′ where we remove u
and add edges (i1, i2), (i3, i4), . . . , (i2k−1, i2k) to G. Since G′ has n vertices and the degree of
each vertex is the same as in G (and thus even), G′ must have an Eulerian tour. Replace every
occurence of the extra edges of the form (it−1, it) that we inserted, by (it−1, u) followed by (u, it).
This gives an Eulerian tour of G.

(b) To have an Eulerian path, exactly two of the vertices in the graph must have odd degree, while
all the remaining ones must have even degree.

(c) A directed graph has an Eulerian tour iff the number of incoming edges at every vertex is equal
to the number of outgoing edges.

3.27 By problem 3.6, we know that the number of vertices with an odd degree in an undirected graph, must
be even. Suppose the number of such vertices is 2k. We arbitrarily pair up these vertices and add an
edge between each pair so that all vertices now have even degree.

By problem 3.26, each connected component of this new graph must have an Eulerian tour. Removing
the k edges we added from this set of tours, breaks it into k paths with the two ends of each path being
vertices of odd degree. Furthermore, all these paths are edge-disjoint, since an Eulerian tour uses each
edge exactly once. Thus, taking the two ends of each path as a pair gives the required pairing.

3.28 a) The formula has two satisfying assignments:

(x1, x2, x3, x4) = (true, false, false, true)

(x1, x2, x3, x4) = (true, true, false, true)

b) An example is (x̄1 ∨ x2) ∧ (x̄2 ∨ x3) ∧ (x̄3 ∨ x̄2) ∧ (x1 ∨ x2) ∧ (x3 ∨ x4)
c) The graphs for the given formula and the example in part b) are given below.

x x x x

x x x

1 2 3 4

1 2 3 4x

d) Notice that a path in the directed graph from x to y means that x =⇒ y. If x and x̄ are in the
same storngly connected componenent, then we have x =⇒ x̄ and x̄ =⇒ x. Then there is no
way to assign a value to x to satisfy both these implications.

9

x x x x

x x x

1 2 3 4

1 2 3 4x

e) We recursively find sinks in the graph of strongly connected components and assign true to all
the literals in the sink component (this means that if a sink component contains the literal x̄2,
then we assign x̄2 = true ≡ x2 = false). We will then remove all the variables which have been
assigned a value from the graph.
When we set the literals in a sink component to true, we set their negations to false. However,
by the symmetry of the way we assigned edges, if we reverse the directions of all the edges and
replace each literal x by x̄, the graph should remain unchanged. Hence, the negations of all the
variables in a sink component must form a source component.
Now, we claim that we did not violate any implication while doing this. Any implication of the
form l1 =⇒ l2 is violated only when l1 = true and l2 = false. All the literals in the sink are
true so this never happens. All the literals in the source are set to false, so no edge going out
of them can be violated. We can now recurse on the remaining graph. Since the values assigned
at each stage are consistent, we end up with a satisfying assignment.

f) To perform the operations in the previous part, we only need to construct this graph from the
formula, find its strongly connected components and identify the sinks - all of which can be done
in linear time.

3.29 We represent all elements of the set S as a graph with an edge from x to y if (x, y) ∈ R. Since the
relation is symmetric, the corresponding graph is undirected. We claim that the connected components
of the graph give the required partition of S into groups S1, S2, . . . , Sk.

Since there are no edges between different connected components, elements in different groups are
definitely not related and it only remains to check that all elements in the same component are related
to each other. However, this follows directly from transitivity since there is a path between any two
elements in the same component.

3.30 The relation is symmetric by definition. It is also reflexive since there is a path from every vertex u to
itself of length 0. To verify transitivity, if (u, v) ∈ R and (v, w) ∈ R, then there is a path from u to v
and v to w, which gives a path from u to w (this might not be a simple path, but we can remove any
cycles). Similarly, we get a path from w to u.

By problem 3.29, this partitions the graph into disjoint groups such that for every two vertices u and
v in the same group, there is a path from u to v and v to u. Also, this is not true for two vertices not
in the same group. However, this is precisely the definition of the strongly connected components.

3.31 (a) The relation is reflexive and symmetric by definition. To verify transitivity, let (e1, e2) ∈ R, both
being contained in a cycle C1 and (e2, e3) ∈ R, contained in cycle C2. Then, if either of C1 and
C2 contains all three of e1, e2 and e3, we are done as then (e1, e3) ∈ R.
If not, then neither of e1 and e3 can be common to both the cycles. Also, C1 and C2 must share
some edges. Starting from e3, we move in both directions on C2, until we reach a vertex in C1.
This gives a (possibly small) path P in C2, which contains e3 and has both endpoints (say v1 and
v2) in C1. Now, C1 has two simple paths between v1 and v2, exactly one of which contains e1.
Removing the other gives a simple cycle containing both e1 and e3. Hence (e1, e3) ∈ R.

(b) The biconnected components in the given graph are {AB,BN,NO,OA}, {BD}, {CD}, {DM}
and {LK,KJ, JL, KH, IJ, IF, FG, GH,HI, FH}. The bridges are BD, CD and DM and the
separating vertices are B, D and L.

(c) We first argue that two biconnected components must share at most one vertex. For the sake
of contradiction, assume that two components C1 and C2 share two vertices u and v. Note that
there must be a path from u to v in both C1 and C2, since in each component, there is a simple

10

cycle containing one edge incident on u and one edge incident on v. The union of these two paths
gives a cycle containing some edges from C1 and some from C2. However, this is contradiction as
this would imply that an edge in C1 is related to an edge in C2.
We now need to prove that if two biconnected components intersect in exactly one vertex, then
it must be a separating vertex. Let the common vertex be u. Let (u, v1) and (u, v2) be the edges
corresponding to u in the two components. Then we claim that removing u disconnects v1 and v2.
If not, then there must be a path between v1 and v2, which does not pass through u. However,
this path, thogether with (u, v1) and (u, v2), gives a simple cycle containing one edge from each
component which is a contradiction.

(d) The graph can in fact, be a forest. However, there cannot be a cycle as this would imply a cycle
involving edges from two different biconnected components, which cannot happen since edges in
different equivalence classes cannot be related.

(e) If the root has only one child, then it is effectively a leaf and removing the root still leaves the
tree connected. The DFS from the first child explores every vertex reachable through a path not
passing through the root. Also, since the graph is undirected, there can be no edges from the
subtree of the first child to that of any other child. Hence, removing the root disconnects the tree
if it has more than one children.

(f) If there is a backedge from a descendant of every child v′ to an ancestor of v, each child can reach
the entire tree above v the graph is still connected after removing v. If there is a child v′ such that
none of its descendants have a backedge to an ancestor of v, then in the graph after removing v,
there is no path between an ancestor of v and v′ (note that there cannot be any cross edges since
the graph is undirected).

(g) While exploring each vertex u, we look at all the edges of the form (u, v) and can store at u, the
lowest pre(v) value for all neighbors of u. low(u) is then given by the minimum of this value,
pre(u) and the low values of all the children of u. Since each child can pass its low value to the
parent when it’s popped off the stack, the entire array can be computed in a single pass of DFS.

(h) A non-root node u is a separating vertex iff pre(u) < low(v) for any child v of u. This can be
checked while computing the array. Also, if u is a separating vertex and v is a child such that
pre(u) < low(v), then the entire subtree with v as the root must be in different biconnected
components than the ancestors or other children of u. However, this subtree itself may have many
biconnected components as it might have other separating vertices.
Hence, we perform a DFS pushing all the edges we see on a stack. Also, when we explore a child
v of a separating vertex u such that the above condition is met, we push an extra “mark” on the
stack (to mark the subtree rooted at v). When DFS returns to v, i.e. when v is popped off the
stack (of vertices), we can also pop the subtree of v from the stack of edges (pop everything till
the mark). If the subtree had multiple biconnected components, they would be already popped
off before the DFS returned to v.

