
Chapter 2– Solutions

January 31, 2007

2

2.2. Consider bdlogb ne.

2.3. a)

T (n) = 3T
⇣n

2

⌘
+ cn = · · · = 3kT

⇣ n

2k

⌘
+ cn

k�1X

i=0

✓
3
2

◆
i

=

= 3kT
⇣ n

2k

⌘
+ 2cn

 ✓
3
2

◆
k

� 1

!

For k = log
2

n, T (n

2

k) = T (1) = d = O(1). Then:

T (n) = dnlog

2

3 + 2cn

✓
nlog

2

3

n
�
◆

= ⇥(nlog

2

3)

as predicted by the Master theorem.

b) T (n) = T (n� 1) + c = · · · = T (n� k) + kc. For k = n, T (n) = T (0) + nc = ⇥(n).

2.4. a) This is a case of the Master theorem with a = 5, b = 2, d = 1. As a > bd, the running time is
O(nlogb a) = O(nlog

2

5) = O(n2.33).

b) T (n) = 2T (n�1)+C, for some constant C. T (n) can then be expanded to C
P

n�1

i=0

2i +2nT (0) =
O(2n).

c) This is a case of the Master theorem with a = 9, b = 3, d = 2. As a = bd, the running time is
O(nd log n) = O(n2 log n).

2.5. a) T (n) = 2T (n/3) + 1 = ⇥(nlog

3

2) by the Master theorem.

b) T (n) = 5T (n/4) + n = ⇥(nlog

4

5) by the Master theorem.

c) T (n) = 7T (n/7) + n = ⇥(n log
7

n) by the Master theorem.

d) T (n) = 9T (n/3) + n2 = ⇥(n2 log
3

n) by the Master theorem.

e) T (n) = 8T (n/2) + n3 = ⇥(n3 log
2

n) by the Master theorem.

f) T (n) = 49T (n/25) + n3/2 log n = ⇥(n3/2 log n). Apply the same reasoning of the proof of the
Master Theorem. The contribution of level i of the recursion is

✓
49

253/2

◆
i

n3/2 log
⇣ n

253/2

⌘
=
✓

49
125

◆
i

O(n3/2 log n)

Because the corresponding geometric series is dominated by the contribution of the first level, we
obtain T (n) = O(n3/2 log n). But, T (n) is clearly ⌦(n3/2 log n). Hence, T (n) = ⇥(n3/2 log n).

g) T (n) = T (n� 1) + 2 = ⇥(n).

h) T (n) = T (n� 1) + nc =
P

n

i=0

ic + T (0) = ⇥(nc+1).

i) T (n) = T (n� 1) + cn =
P

n

i=0

ci + T (0) = c

n+1�1

c�1

+ T (0) = ⇥(cn).

j) T (n) = 2T (n� 1) + 1 =
P

n�1

i=0

2i + 2nT (0) = ⇥(2n).

k) T (n) = T (
p

n) + 1 =
P

k

i=0

1 + T (b), where k 2 Z such that n
1

2

k is a small constant b, i.e. the
size of the base case. This implies k = ⇥(log log n) and T (n) = ⇥(log log n).

2.6. The corresponding polynomial is 1

t

0

�
1 + x + x2 + · · · + xt

0

�
.

3

2.7. For n 6= 0 and ! = e
2⇡
n :

n�1X

i=0

!i =
1� !n

1� !
= 0

n�1Y

i=0

!i = !
P n�1

i=0

i = !
n(n�1)

2

The latter is 1 if n is odd and �1 if n is even.

2.8. a) The appropriate value of ! is i. We have FFT(1, 0, 0, 0) = (1, 1, 1, 1) and FFT(1/4, 1/4, 1/4, 1/4) =
(1, 0, 0, 0).

b) FFT(1, 0, 1,�1) = (1, i, 3,�i).

2.9. a) Use ! = i. The FFT of x + 1 is FFT(1, 1, 0, 0) = (2, i + 1, 0, i � 1). The FFT of x2 + 1 is
FFT(1, 0, 1, 0) = (2, 0, 2, 0). Hence, the FFT of their product is (4, 0, 0, 0), corresponding to the
polynomial 1 + x + x2 + x3.

b) Use ! = i. The FFT of 2x2 +x+1 is FFT(1, 1, 2, 0) = (4,�1+ i, 2,�1� i). The FFT of 3x+2 is
FFT(2, 3, 0, 0) = (5, 2 + 3i,�1, 2� 3i). The FFT of their product is then (20,�5� i,�2,�5 + i).
This corresponds to the polynomial 6x3 + 7x2 + 5x + 2.

2.10.
�
�20, 137

3

,� 125

4

, 25

3

,� 3

4

�
.

2.11. For i, j  n

2

:

(XY)
ij

=
nX

k=1

X
ik

Y
kj

=
n/2X

k=1

A
ik

E
kj

+
n/2X

k=1

B
ik

G
ki

= (AE + BG)
ij

A similar proof holds for the remaining sectors of the product matrix.

2.12. Each function call prints one line and calls the same function on input of half the size, so the number
of printed lines is P (n) = 2P (n

2

) + 1. By the Master theorem P (n) = ⇥(n).

2.13. a) B
3

= 1, B
5

= 2, B
7

= 5. Any full binary tree must have an odd number of vertices, as it has an
even number of vertices that are children of some other vertex and a single root. Hence B

2k

= 0
for all k.

b) By decomposing the tree into the subtrees rooted at the children of the root:

B
n+2

=
n+1X

i=1

B
i

B
n+1�i

c) We show that B
n

� 2
n�3

2 . Base case: B
1

= 1 � 2�1 and B
3

= 1 � 20. Inductive step: for n � 3
odd:

B
n+2

=
n+1X

i=1

B
i

B
n+1�i

� n + 2
2

2
n�5

2 � 22+

n�5

2 = 2
n�1

2

.

2.14. Sort the array in time O(n log n). Then, in one linear time pass copy the elements to a new array,
eliminating the duplicates.

4

2.15. The simplest way to implement split in place is the following:
function split(a[1, · · · , n], v)
store= 1
for i = 1 to n:

if a[i] < v:
swap a[i] and a[store]
store = store +1

for i =store to n:
if a[i] = v:

swap a[i] and a[store]
store = store +1

The first for loop passes through the array bringing the elements smaller than v to the front, so splitting
the array into a subarray of elements smaller than v and one of elements larger or equal to v. The
second for loop uses the same strategy on the latter subarray to split into a subarray of elements equal
to v and one of elements larger than v. The body of both for loops takes constant time, so the running
time is O(n).

2.16. It is su�cient to show how to find n in time O(log n), as we can use binary search on the array
A[1, · · · , n] to find any element x in time O(log n). To find n, query elements A[1], A[2], · · · , A[2i], · · · ,
until you find the first element A[2k] such that A[2k] = 1. Then, 2k�1  n < 2k. We can then
do binary search on A[2k�1, · · · , , 2k] to find the last non-infinite element of A. This takes time
O(log(2k � 2k�1) = O(log n).

2.17. First examine the middle element A[n

2

]. If A[n

2

] = n

2

, we are done. If A[n

2

] > n

2

, then every subsequent
element will also be bigger than its index since the array values grow at least as fast as the indices.
Similarly, if A[n

2

] < n

2

, then every previous element in the array will be less than its index by the same
reasoning. So after the comparison, we only need to examine half of the array. We can recurse on the
appropriate half of the array. If we continue this division until we get down to a single element and
this element does not have the desired property, then such an element does not exist in A. We do a
constant amount of work with each function call. So our recurrence relation is T (n) = T (n/2) + O(1),
which solves to T (n) = O(log n).

2.18. As in the ⌦(n log n) lower bound for sorting on page 52 we can look at a comparison-based algorithm
for search in a sorted array as a binary tree in which a path from the root to a leaf represents a run of
the algorithm: at every node a comparison takes place and, according to its result, a new comparison
is performed. A leaf of the tree represents an output of the algorithm, i.e. the index of the element x
that we are searching or a special value indicating the element x does not appear in the array. Now,
all possible indices must appear as leaves or the algorithm will fail when x is at one of the missing
indices. Hence, the tree must have at least n leaves, implying its depth must be ⌦(log n), i.e. in the
worst case it must perform at least ⌦(log n) comparisons.

2.19. a) Let T (i) be the time to merge arrays 1 to i. This consists of the time taken to merge arrays 1
to i� 1 and the time taken to merge the resulting array of size (i� 1)n with array i, i.e. O(in).
Hence, for some constant c, T (i)  T (i� 1) + cni. This implies T (k)  T

1

+ cn
P

k

i=2

i = O(nk2).
b) Divide the arrays into two sets, each of k/2 arrays. Recursively merge the arrays within the

two sets and finally merge the resulting two sorted arrays into the output array. The base case
of the recursion is k = 1, when no merging needs to take place. The running time is given by
T (k) = 2T (k/2) + O(nk). By the Master theorem, T (k) = O(nk log k).

2.20. We keep M + 1 counters, one for each of the possible values of the array elements. We can use these
counters to compute the number of elements of each value by a single O(n)-time pass through the

5

array. Then, we can obtain a sorted version of x by filling a new array with the prescribed numbers
of elements of each value, looping through the values in ascending order. Notice that the ⌦(n log n)
bound does not apply in this case, as this algorithm is not comparison-based.

2.21. a) Suppose µ > µ
1

. If we move µ to the left by an infinitesimal amount ✏, the distance to all x
i

< µ
decreases by ✏, whilst the distance to all points x

i

> µ increases by ✏. Because µ > µ
1

, there are
more points to the left of µ than to the right, so that the the shift by ✏ causes the sum of distances
to decrease. The same reasoning can be applied to the case µ < µ

1

.
b) We use the second method:

X

i

(x
i

� µ
2

)2 + n(µ� µ
2

)2 =

=
X

i

x2

i

� 2nµ2

2

+ nµ2

2

+ nµ2 � 2nµµ
2

+ nµ2

2

=

=
X

i

x2

i

� 2(
X

i

x
i

)µ + nµ2 =

=
X

i

(x
i

� µ)2

Then,
P

i

(x
i

� µ)2 will be minimized when the second addend of the left hand side is minimized,
i.e. for µ = µ

2

.
c) The maximizing x

i

in max
i

|x
i

� µ| will be the maximum x
max

or the minimum x
min

of the
observations. Then µ must minimize max{x

max

� µ, µ � x
min}, so µ = x

min

+x

max

2

. This value
can be computed in O(n) time by passing through the observations to identify the minimum and
maximum elements and taking their average in constant time.

2.22. Suppose we are searching for the kth smallest element s
k

in the union of the lists a[1, · · · ,m] and
b[1, · · · , n]. Because we are searching for the kth smallest element, we can restrict our attention to
the arrays a[1, · · · , k] and b[1, · · · , k]. If k > m or k > n, we can take all the elements with index
larger than the array boundary to have infinite value. Our algorithm starts o↵ by comparing elements
a[bk/2c] and b[dk/2e]. Suppose a[bk/2c] > b[dk/2e]. Then, in the union of a and b there can be at
most k � 2 elements smaller than b[dk/2e], i.e. a[1, · · · , bk/2c � 1] and b[1, · · · , dk/2e � 1], and we
must necessarily have s

k

> b[dk/2e]. Similarly, all elements a[1, · · · , bk/2c] and b[1, · · · , dk/2e] will be
smaller than a[bk/2c+1]; but these are k elements, so we must have s

k

< a[bk/2c+1]. This shows that
s

k

must be contained in the union of the subarrays a[1, · · · , bk/2c] and b[dk/2e + 1, k]. In particular,
because we discarded dk/2e elements smaller than s

k

, s
k

will be the bk/2cth smallest element in this
union. We can then find s

k

by recursing on this smaller problem. The case for a[bk/2c] < b[dk/2e] is
symmetric. The last case, which is also the base case of the recursion, is a[bk/2c] = b[dk/2e], for which
we have s

k

= a[bk/2c] = b[dk/2e].
At every step we halve the number of elements we consider, so the algorithm will terminate in log(2k)
recursive calls. Assuming the comparison takes constant time, the algorithm runs in time O(log k),
which is O(log(m + n)), as we must have k  m + n for the kth smallest element to exist.

2.23. a) If A has a majority element v, v must also be a majority element of A
1

or A
2

or both. To find v,
recursively compute the majority elements, if any, of A

1

and A
2

and check whether one of these
is a majority element of A. The running time is given by T (n) = 2T (n

2

) + O(n) = O(n log n).
b) After this procedure, there are at most n/2 elements left as at least one element in each pair is

discarded. If these remaining elements have a majority, there exists v among them appearing at
least n/4 times. Hence, v must have been paired up with itself in at least n/4 pairs during the
procedure, showing that A contains at least n/2 copies of v. The running time of this algorithm
is described by the recursion T (n) = T (n/2) + O(n). Hence, T (n) = O(n).

6

2.24. a) Modify the in place split procedure of 2.15 so that it explicitly returns the three subarrays
S

L

,S
R

,S
v

. Quicksort can then be implemented as follows:
function quicksort(A[1, · · · , n])

pick k at random among 1, · · · , n
(S

L

, S
R

, S
v

=split(A[1, · · · , n], A[k])
quicksort(S

L

)
quicksort(S

R

)

b) In the worst case we always pick A[k] that is the largest element of A. Then, we only decrease
the problem size by 1 and the running time becomes T (n) = T (n � 1) + O(n), which implies
T (n) = O(n2).

c) For 1  i  n, let p
i

be the probability that A[k] is the ith largest element in A and let t
i

be
the expected running time of the algorithm in this case. Then, the expected running time can be
expressed as T (n) =

P
n

i=1

p
i

t
i

. A[k] is every element of A with the same probability 1

n

, so p
i

= 1

n

.
Moreover, t

i

is at most O(n) + T (n� i + 1) + T (i� 1), as S
L

has at most n� i + 1 elements and
S

R

has at most i� 1. Then, for some constant c:

T (n)  1
n

nX

i=1

O(n) + T (i� 1) + T (n� i + 1)

!
 cn +

1
n

n�1X

j=0

T (j) + T (n� j)

We use induction to show that the recurrence is satisfied by T (n)  bn log n for some choice of
constant b. We start by rewriting T (n) as:

T (n)  cn +
2
n

n
2X

j=0

T (j) + T (n� j)

Then, we substitute the expression from the inductive hypothesis:

T (n)  cn +
2b

n

n
2X

j=1

j log j + (n� j) log(n� j)

Next, we divide the sum as follows:

T (n)  cn +
2b

n

n
4

�1X

j=1

j log j + (n� j) log(n� j) +
2b

n

n
2X

j=

n
4

j log j + (n� j) log(n� j)

Finally, we can bound each term in the first sum above by n log n and each term in the second
sum by n log(3

4

n):

T (n)  cn +
b

2
n log n +

b

2
n log n� b

2
n log

✓
4
3

◆
= bn log n + n

✓
c� b

2
log
✓

4
3

◆◆

This is smaller than bn log n for b > 2c

log(

4

3

)

, completing the proof by induction.

2.25 a) The algorithm should be:
function pwr2bin(n)
if n = 1: return 1010

2

else:

z =pwr2bin(n/2)

7

return fastmultiply(z, z)

The running time T (n) can then be written as

T (n) = T (n/2) + O(na)

By the Master theorem, T (n) = O(na).
b) The algorithm is the following:

dec2bin(x)
if n = 1: return binary[x]
else:

split x into two decimal numbers x
L

, x
R

with n/2 digits each

return {fastmultiply(dec2bin(x
L

),pwr2bin(n/2)) + dec2bin(x
R

)}
The running time T (n) is expressed by the recurrence relation

T (n) = 2T (n/2) + O(na)

as both the fastmultiply and the pwr2bin operations take time O(na). By the Master theorem,
T (n) = O(na), as a = log

2

3 > 1.

2.26 We show how to use an algorithm for squaring integers to multiply integers asymptotically as fast. Let
S(n) be the time required to square a n-bit number. We can multiply n-bit integers a and b by first
computing 2ab = (a+b)2�a2�b2 and then shifting the results 2ab by one bit to the right to obtain ab.
This algorithm takes 3 squaring operations and 3 additions and hence has running time 3S(n)+O(n).
But S(n) = ⌦(n), as any squaring algorithm must at least read the n-bit input. This implies the
running time of the multiplication algorithm above is ⇥(S(n)), contradicting Professor Lake’s claim.

2.27 a) 
a b
c d

�
2

=


a2 + bc b(a + d)
c(a + d) bc + d2

�

Hence the 5 multiplications a2, d2, bc, b(a + d) and c(a + d) su�ce to compute the square.
b) We do get 5 subproblems but they are not of the same type as the original problem. Note that we

started with a squaring problem for a matrix of size n ⇥ n and three of the 5 subproblems now
involve multiplying n/2⇥ n/2 matrices. Hence the recurrence T (n) = 5T (n/2) + O(n2) does not
make sense.

c) Given two n⇥ n matrices X and Y , create the 2n⇥ 2n matrix A:

A =


0 X
Y 0

�

It now su�ces to compute A2, as its upper left block will contain XY :

A =


XY 0
0 XY

�

Hence, the product XY can be calculated in time O(S(2n)). If S(n) = O(nc), this is also O(nc).

2.28 For any column vector u of length n, let u(1) denote the column vector of length n/2 consisting of the
first n/2 coordinates of u. Similarly, define u(2) to be the vector of the remaining coordinates. Note
then that (H

k

v)(1) = H
k�1

v(1) + H
k�1

v(2) = H
k�1

(v(1) + v(2)) and (H
k

v)(2) = H
k�1

v(1)�H
k�1

v(2) =
H

k�1

(v(1) � v(2)). This shows that we can find H
k

v by calculating (v(1) + v(2)) and (v(1) � v(2)) and
recursively computing H

k�1

(v(1) + v(2)) and H
k�1

(v(1) � v(2)). The running time of this algorithm is
given by the recursion T (n) = 2T (n

2

) + O(n), where the linear term is the time taken to perform the
two sums. This has solution T (n) = O(n log n) by the Master theorem.

8

2.29 a) We show this by induction on n, the degree of the polynomial. For n = 1, the routine clearly
works as the body of the loop itself evaluates p at x. For n = k + 1, notice that the first k
iterations of the for loop evaluate the polynomial q(x) = a

1

+ a
2

x+ a
3

x2 + · · · a
n

xn�1 at x by the
inductive hypothesis. The last iteration of the for loop evaluates then xq(x) + a

0

= p(x) at point
x, as required.

b) Every iteration of the for loop uses one multiplication and one addition, so the routine uses n
additions and n multiplications. Consider now the polynomial p(x) = xn for n = 2k. p can be
evaluated at x using only k = log n multiplication simply by repeatedly squaring x. However,
Horner’s rule still takes n multiplications.

2.30 (a) Observe that taking ! = 3 produces the following powers : (!,!2,!3,!4,!5,!6) = (3, 2, 6, 4, 5, 1).
Verify that

! + !2 + !3 + !4 + !5 + !6 = 1 + 2 + 3 + 4 + 5 + 6 = 21 = 0 (mod 7)

(b) The matrix M
6

(3) is the following:
2

6666664

1 1 1 1 1 1
1 3 2 6 4 5
1 2 4 1 2 4
1 6 1 6 1 6
1 4 2 1 4 2
1 5 4 6 2 3

3

7777775

Multiplying with the sequence (0, 1, 1, 1, 5, 2) we get the vector (3, 6, 4, 2, 3, 3).

(c) The inverse matrix of M
6

(3) is easily seen to be the matrix

6 ·

2

6666664

1 1 1 1 1 1
1 5 4 6 2 3
1 4 2 1 4 2
1 6 1 6 1 6
1 2 4 1 2 4
1 3 2 6 4 5

3

7777775

Verify that multiplying these two matrices mod 7 equals the identity. Also multiply this matrix
with vector (3, 6, 4, 2, 3, 3) to get the original sequence.

(d) We first express the polynomials as vectors of dimension 6 over the integers mod 7: (1, 1, 1, 0, 0, 0),
and (�1, 2, 0, 1, 0, 0) = (6, 2, 0, 1, 0, 0) respectively. We then apply the matrix M

6

(3) to both to get
the transform of the two sequences. That produces (3, 6, 0, 1, 0, 3) and (2, 4, 4, 3, 1, 1) respectively.
Then we just multiply the vectors coordinate-wise to get (6, 3, 0, 3, 0, 3). This is the transform of
the product of the two polynomials. Now, all we have to do is multiply by the inverse FT matrix
M

6

(3)�1 to get the final polynomial in the coe�cient representation : (�1, 1, 1, 3, 1, 1).

2.31 a) We prove each statement of the rule separately:
⇤ If a and b are both even, then gcd(a, b) = 2 gcd(a/2, b/2).

Proof: gcd(a, b) = d i↵ a = da0 and b = db0 and gcd(a0, b0) = 1. Since a and b are both even,
2|d so a/2 = a0d/2 and b/2 = b0d/2, and since gcd(a0, b0) = 1, then gcd(a/2, b/2) = d/2.

⇤ If a is even and b is odd, then gcd(a, b) = gcd(a/2, b).
Proof: Since b is odd, gcd(a, b) = d is odd. If an odd d|a then d|a/2.

⇤ If a and b are both odd, then gcd(a, b) = gcd((a� b)/2, b).
Proof: On page 20 we proved that for a � b, gcd(a, b) = gcd(a�b, b). Now since |a�b| is even
if both a and b are odd, we can just use part 2 to conclude that gcd(a, b) = gcd((a� b)/2, b).

9

b) Consider the following algorithm:

function gcd(a, b)
if b == 0:

return a
if a is even:

if b is even:

return 2· gcd(a/2, b/2)
else:

return gcd(b, a/2)
else

return gcd(b, (a� b)/2)

The algorithm is correct according to part a) of this problem. Each argument is reduced by half
after at most two calls to the function, so the function is called at most O(log a + log b) times.
Each function call takes constant time, assuming the subtraction in the last line takes constant
time, so the running time is O(log a + log b).

c) More realistically, if we take the subtraction to take time O(n), we have that each call takes at
most time O(n) and there are at most O(log a + log b) = O(n) calls. So, the running time is
O(n2), which compares favorably to the O(n3) algorithm of Chapter 1.

2.32 a) Suppose 5 or more points in L are found in a square of size d⇥d. Divide the square into 4 smaller
squares of size d

2

⇥ d

2

. At least one pair of points must fall within the same smaller square: these
two points will then be at distance at most dp

2

< d, which contradicts the assumption that every
pair of points in L is at distance at least d.

b) The proof is by induction on the number of points. The algorithm is trivially correct for two
points, so we may turn to the inductive step. Suppose we have n points and let (p

s

, p
t

) be the
closest pair. There are three cases.
If p

s

, p
t

2 L, then (p
s

, p
t

) = (p
L

, q
L

) by the inductive hypothesis and all the other pairs tested by
the algorithm are at a larger distance apart, so the algorithm will correctly output (p

s

, p
t

). The
same reasoning holds if p

s

, p
t

2 R.
If p

s

2 L and p
t

2 R, the algorithm will be correct as long as it tests the distance between p
s

and
p

t

. Because p
s

and p
t

are at distance smaller than d, they will belong to the strip of points with
x-coordinate in [x�d, x+d]. Suppose that y

s

 y
t

. A symmetric construction applies in the other
case. Consider the rectangle S with vertices (x� d, y

s

), (x� d, y
s

+ d), (x + d, y
s

+ d), (x + d, y
s

).
Notice that both p

s

and p
t

must be contained in S. Moreover, the intersection of S with L is
a square of size d ⇥ d, which, by a), can contain at most 4 points, including p

s

. Similarly, the
intersection of S with R can also contain at most 4 points, including p

t

. Because the algorithm
checks the distance between p

s

and the 7 points following p
s

in the y-sorted list of points in the
middle strip, it will check the distance between p

s

and all the points of S. In particular, it will
check the distance between p

s

and p
t

, as required for the correctness of the algorithm.

c) When called on input of n points this algorithm first computes the median x value in O(n)
and then splits the list of points into those belonging to L and R, which also takes time O(n).
Then the algorithm can recurse on these two subproblems, each over n/2 points. Once these
have been solved the algorithm sorts the points in the middle strip by y coordinate, which takes
time O(n log n) and then computes O(n) distances, each of which can be calculated in constant
time. Hence the running time is given by the recursion T (n) = 2T (n

2

) + O(n log n). This can be
analyzed as in the proof of the Master theorem. The kth level of the recursion tree will contribute

10

t
k

= 2k

n

2

k (log n� k). Hence, the total running time will be:

log nX

k=0

t
k

= n log2 n� n
log nX

k=0

k  n log2 n� n

2
log2 n = O(n log2 n)

.
d) We can save some time by sorting the points by y-coordinate only once and making sure that the

split routine is implemented as not to modify the order by y when splitting by x. Sorting takes
time O(n log n), while the time required by the remaining of the algorithm is now described by
the recurrence T (n) = 2T (n

2

) + O(n), which yields T (n) = O(n log n). Hence, the overall running
time is O(n log n).

2.33 a) Let M
ij

6= 0. It is su�cient to bound above Pr[(Mv)
i

= 0], as Pr[(Mv)
i

= 0] � Pr[Mv = 0].
Now, (Mv)

i

=
P

n

t=1

M
it

v
t

, so (Mv)
i

is 0 if and only if:

M
ij

v
j

=
nX

t=1

t6=j

M
it

v
t

Consider now any fixed assignment of values to all the v
t

’s but v
j

. If, under this assignment, the
right hand side is 0, v

j

has to be 0. Similarly, if the right hand side is non-zero, v
j

cannot be 0.
In either case, v

j

can only take one of the two values {0, 1} and Pr[(Mv)
i

= 0]  1

2

.
b) If AB 6= C, the di↵erence M = AB � C is a non-zero matrix and, by part a):

Pr[ABv = Cv] = Pr[Mv = 0]  1
2

The randomized test for checking whether AB = C is to compare ABv with Cv for a random v con-
structed as in a). To compute ABv, it is possible to use the associativity of matrix multiplication
and compute first Bv and then A(Bv). This algorithm performs 3 matrix-vector multiplications,
each of which takes time O(n2), while the final comparison takes time O(n). Hence, the total
running time of the randomized algorithm is O(n2).

2.34 A linear-time algorithm requires dynamic programming. Here we give a divide-and-conquer algorithm
running in polynomial time in n.
Let � be the input 3SAT formula exhibiting the special local property. For 1  i  j  n, let �(i, j) be
the 3SAT formula consisting of clauses of � containing only variables x

i

, x
i+1

, · · · , x
j

. We can then split
� into �(1, n

2

, �(n

2

+ 1, n) and the formula consisting of the remaining clauses, i.e. those containing
at least one variable with index k  n

2

and one with index k > n

2

. The local property implies that
can only contain variables with index in the range {n

2

� 9, · · · , n

2

+ 10}. Hence, at most 20 variables
appear in . Suppose now we are given an assignment a to the variable of that satisfies .. To check
if a can be extended to a satisfying assignment for the whole of �, we can substitute the values of a
for their corresponding variables within �(1, n

2

and �(n

2

+ 1, n) and consider the satisfiability of these.
Letting �

a

(1, n

2

and �
a

(n

2

+1, n) be these new formulae, notice that � will be satisfiable by an extension
to a if and only if �

a

(1, n

2

and �
a

(n

2

+ 1, n) are satisfiable, as the latter have no variables in common.
Moreover, both �

a

(1, n

2

and �
a

(n

2

+ 1, n) exhibit the same local property as �, so we can recurse on
them to verify their satisfiability. We can apply this procedure over all choices of a satisfying to
check if any assignment satisfies �. The running time of this algorithm is described by the recursion
T (n)  220 · 2T (n/2) + O(n) = O(n21), as there are at most 220 assignments a, each of which gives
rise to two subproblems.

