
Chapter 10 – Solutions
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10.1 (a) Suppose |ψ〉 = (a0|0〉 + a1|1〉) ⊗ (b0|0〉 + b1|1〉). Equivalently, |ψ〉 = a0 · b0|00〉 + a0 · b1|01〉 + a1 ·
b0|10〉+ a1 · b1|11〉.
From this we conclude : a0 · b0 = 1√

2
, a0 · b1 = a1 · b0 = 0, a1 · b1 = 1√

2

which implies that one of a0, b1 = 0 and also one of a1, b0 = 0 but then a0 · b0 = 0 or a1 · b1 = 0,
which is a contradiction.

(b) |0〉 with probability 1/2 and |1〉 with probability 1/2.

(c) After measuring the first qubit, the second qubit will have the same value as the first one.

10.2 Denote by C the total unitary operation that the circuit preforms. Then

C|00〉 = CNOT (H|0〉 ⊗ |0〉) = CNOT

((
1√
2
|0〉+

1√
2
|1〉

)
⊗ |0〉

)
=

1√
2
|00〉+

1√
2
|11〉

as required. Similarly, we get

C|10〉 = CNOT (H|1〉 ⊗ |0〉) = CNOT

((
1√
2
|0〉 − 1√

2
|1〉

)
⊗ |0〉

)
=

1√
2
|00〉 − 1√

2
|11〉

C|01〉 = CNOT (H|0〉 ⊗ |1〉) = CNOT

((
1√
2
|0〉+

1√
2
|1〉

)
⊗ |1〉

)
=

1√
2
|01〉+

1√
2
|10〉

C|11〉 = CNOT (H|1〉 ⊗ |1〉) = CNOT

((
1√
2
|0〉 − 1√

2
|1〉

)
⊗ |1〉

)
=

1√
2
|01〉 − 1√

2
|10〉

10.3 By definition of the (classical) Fourier Transform, it is easy to see that QFT
(

1√
M

∑M−1
j=0 |j〉

)
= |0〉.

10.4 QFT (|j〉) = 1√
M

∑M
x=1 ω

x·j |x〉, where ω = e
2πi
M .

10.5 By the previous problem,

|β〉 = QFT (|α〉) =
∑

j

αj

∑
x

ωx·j |x〉 =
∑

x

∑
j

αjω
x·j

 |x〉

Also,

|β〉′ = QFT (|α〉′) =
∑

j

αj

∑
x

ωx·(j+l)|x〉 =
∑

x

ωx·l

∑
j

αjω
x·j

 |x〉 =
∑

x

ωl·jβj |x〉

The rest follows since we know that the Fourier transform of the periodic vector
∑M/k−1

j=0

√
k
M |jk〉 is∑k−1

j=0
1√
k
|jM/k〉.

10.6 Let C be the left circuit. We will examine what state does C produce for inputs the computational
states |00〉, |01〉, |10〉, |11〉. We will do the calculations just for one of them, say |01〉. The rest follow
similarly.
We first apply Hadamard gates to both qubits and get the state: ( 1√

2
|0〉+ 1√

2
|1〉)⊗ ( 1√

2
|0〉 − 1√

2
|1〉) =

1
2 |00〉 − 1

2 |01〉 + 1
2 |10〉 − 1

2 |11〉. Then, we apply CNOT gate to get 1
2 |00〉 − 1

2 |01〉 + 1
2 |11〉 − 1

2 |10〉 =
( 1√

2
|0〉 − 1√

2
|1〉)⊗ ( 1√

2
|0〉 − 1√

2
|1〉).

Finally, we apply Hadamard gates again to both qubits, and the final state is: |11〉. Observe that if
we switch the control and target qubits of the CNOT gate (call that gate C’), we have C ′|01〉 = |11〉,
as claimed.Similarly, we obtain C ′|00〉 = C|00〉 = |0〉0, C ′|10〉 = C|10〉 = |10〉, C ′|11〉 = C|11〉 = |01〉.

10.7 (a) For each of the gates, it is sufficient to argue about the behavior of the gates when applied to the
basis states as it extends to a superposition state by linearity. Since the NOT gate maps a |0〉 to |1〉
and vice-versa, applying it twice brings |0〉 to |0〉 and |1〉 to |1〉 and hence NOT (NOT (|x〉)) = |x〉
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For any basis state, the CNOT gate applies a NOT on the second qubit if the first qubit is 1.
Since the first qubit is left unchanged, applying the gate twice restores the second qubit and hence
the original state. Similarly, applying the C-SWAP gate twice does nothing if the first qubit is 0,
and swaps the last two qubits twice if it is 1. In each case, we get back the original state.

(b) We give inputs a,b,0. We observe that is a = 1 then the third output qubit equals a ∧ b = b. If
a = 0 then it equals a ∧ b = 0.

(c) We can easily verify that fan out can be achieved (at the first and second outputs) if we give input
a, 0, 1 to the C-SWAP gate.

(d) The set of classical gates {AND,NOT} is universal for classical computation. In (b) and (c) we
have shown that AND and fan out can be implemented by C-SWAP gates, which on input |x, 0, 0〉
outputs |x, y, z〉 (the desired output is at the second qubit and the last qubit contains some junk).
Adding the NOT gate, we conclude that any classical circuit can be implemented using NOT and
C-SWAP gates.

(e) As shown in (a) above, the C-SWAP and NOT gates are the reverses or themselves. Assume that
Q = G1G2 · · ·Gk, where Gi are either C-SWAP or NOT gates. Then, Q−1 = Gk · · ·G2G1.

(f) We use some extra zeroes (denoted by w with |w| = |y| and initialized to 0), which are not used
by the circuit constructed in the previous parts. First apply Q to |x, 0, 0, 0〉 to get |x, y, z, 0〉. We
can now apply a CNOT gate to each bit pair (yi, wi) using the bits of y as control bits. This gives
the state |x, y, z, y〉. Finally, we apply Q−1 to get |x, 0, 0, y〉. Renumbering the outputs gives the
desired state |x, y, 0, 0〉.

10.8 (a) Let r denote the order of x. From Fermat’s Little Theorem, we know that xp−1 = 1 mod p. It is
well-known that the multiplicative group modulo a prime number is a cyclic group, so there exists
an element g that generates all elements of the group, in the sense that every element x can be
written x = gk mod p. Since x is uniformly random, the probability that k is odd is 1/2. Also,
gkr = 1 mod p and as gi 6= 1 for any i between 1 and p− 2, we must have p− 1|kr. Since p− 1
is even, given that k is odd, r has to be even. This even happens with probability at least 1/2.

(b) By the Chinese Remainder Theorem, picking x uniformly modN is equivalent to picking x1 mod p
and x2 mod q. Let r1, r2 the order of x1, x2 respectively. Clearly, r1|r and r2|r. Observe that r
is even if either r1 is even of r2 is even. By (a) the probability of this event is at least 3/4.

(c) Let xr/2 = ±1 mod N . Then xr = 1modp and xr = 1 mod q. There are only two square roots of
1 modulo a prime. By Chinese Remainder Theorem,there are only four square roots of 1 modulo
N . Therefore xr/2 = ±1 mod N for only two of them,i.e. with probability at most 1/2.


