
Chapter 1–Solutions

February 2, 2007

2

1.1. A single digit number is at most b−1, therefore the sum of any three such numbers is at most 3b−3. On
the other hand, a two-digit number can be as large as b2 − 1. It is enough to show that b2 − 1 ≥ 3b− 3.
Indeed, b2 − 1 − 3b − 3 = (b − 1) · (b − 2), which is ≥ 0 for b ≥ 2.

1.2. For a number N we need ⌈log2(N + 1)⌉ binary digits and ⌈log10(N + 1)⌉ decimal digits. By the
logarithm conversion formula: ⌈log10(N +1)⌉ = ⌈log2(N +1) · log2(10)⌉ ≤ ⌈log2(N +1)⌉ · ⌈log2(10)⌉ =
4 · ⌈log2(N + 1)⌉. For very large numbers, ⌈log2(N + 1) · log2(10)⌉ ≃ log2(N + 1) · log2(10) so the
required ratio is approximately equal to log2(10) ≃ 3.8.

1.3. The minimum depth of a d-ary tree is achieved when all nodes have precisely d children. In that case,

the depth is logd(n). For any d-ary tree, we have depth D ≤ logd(n) = log(n)
log(d) = Ω(log(n)

log(d))

1.4. We can lower bound n! as

(n

2

)

· · · · ·
(n

2

)

︸ ︷︷ ︸
n
2

terms

≤ 1 · 2 · 3 · · · · ·
(n

2

)

·
(n

2
+ 1

)

· · · · · n
︸ ︷︷ ︸

n
2

terms

and upper bound it as

1 · 2 · 3 · · · · · n
︸ ︷︷ ︸

n terms

≤ n · · · · · n
︸ ︷︷ ︸

n terms

Hence,

(n

2

)n
2

≤ n! ≤ nn,

n

2
log(

n

2
) ≤ log(n!) ≤ n log n,

1

2
(n log n − n) ≤ log(n!) ≤ n log n.

1.5. Upper bound:

n∑

i=1

1

i
=1 +

1

2
+

1

3
+

1

4
+ · · · ≤

≤1 +
1

2
+

1

2
+

1

4
+

1

4
+

1

4
+

1

4
+ · · · +

1

2k
+ · · · +

1

2k
︸ ︷︷ ︸

2k terms

=

=1 + 1 + · · · + 1 + 1
︸ ︷︷ ︸

O(log n) terms

=

=O(log n)

3

Lower bound:

n∑

i=1

1

i
=1 +

1

2
+

1

3
+

1

4
+ · · · ≥

≥1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
· · · +

1

2k
+ · · · +

1

2k
︸ ︷︷ ︸

2k−1 terms

=

=1 +
1

2
+

1

2
+ · · · +

1

2
+

1

2
︸ ︷︷ ︸

Ω(log n) terms

=

=Ω(log n)

1.6. First observe that multiplication of a number N by a one-digit binary number b results in the number
0 if b = 0 and N if b = 1. Also, multiplication of a binary number by 2k for any power of 2 results in
shifting N to the left k times and adding k digits equal to 0 at the end.
Let N,M the numbers we need to multiply. Assume M is a k-digit binary number. Write M =
b0 + 2b1 + · · · + 2kbk. Then N · M = N · (b0 + 2b1 + · · · + 2kbk) = Nb0 + 2Nb1 + · · · + 2kNbk. If we
consider the above observations, this expression is the same as the one illustrated in page 24 for the
grade-school multiplication.

1.7. Assume we want to multiply the n-bit number x with the m-bit number y. The algorithm must
terminate after m recursive calls, because at each call y is halved (the number of digits is decreased
by one). Each recursive call requires a division by 2, a check for even-odd, a multiplication by 2 (all of
those take constant time) and a possible addition of x to the current result (which takes O(n) time)
so total O(m · n) time.

1.8. We will first prove the correctness of the algorithm by induction on the number x. Base case is when
x = 0 where correctness is obvious. Assume the algorithm returns correct values of q′, r′ so that
⌊x

2 ⌋ = q′y + r′. If x is even then x = 2 · ⌊x
2 ⌋ = 2q′ + 2r′. If 2r′ ≥ y then x = (2q′ + 1)y + (2r′ − y),

otherwise x = 2q′y + 2r′, which is exactly what the last call of the algorithm returns. If x is odd, then
x = 2 · ⌊x

2 ⌋+1 = 2q′+2r′+1. Again, according to 2r′+1 ≥ y or not it is easy to see that the algorithm
returns the correct values of q and r.
Now, considering the running time : there are n recursive calls (each time x is halved, so we have one
bit less). Each call requires two multiplications by 2, a check of even or odd, a possible addition of
1 (all of those take constant time) and possibly a subtraction of y which takes O(n) time. The total
running time is O(n2).

1.9. x ≡ x′ mod N implies that N divides x − x′, similarly N divides y − y′. Consider the difference
D1 = x+y−x′−y′ = (x−x′)+(y−y′). We easily conclude that N divides D1 therefore x+y ≡ x′+y′

mod N .
Similarly, define D2 = xy−x′y′ = xy− xy′ + xy′ − x′y′ = x(y − y′) + (x−x′)y. We can easily see that
N divides D2 so xy ≡ x′y′ mod N .

1.10. a ≡ b mod N means N divides a − b. Since M divides N , then M also divides a − b which leads to
the conclusion a ≡ b mod M .

1.11. We first observe that 35 = 5·7 and by Fermat’s Little Theorem and simple algebra, a(5−1)·(7−1) = a4·6 =
a24 ≡ 1 mod 35, for all 1 ≤ a < 35. Therefore, 41536 = 424·64 ≡ 1 mod 35 and 94824 = 924·201 ≡ 1
mod 35. We conclude that 41536 ≡ 94824 mod 35 so the difference is divisible by 35.

1.12. 222006

= 22·22005

= 422005

≡ 1 mod 3.

4

1.13. Since 31 is a prime number, by Fermat’s Little Theorem we get a30 ≡ 1 mod 31 for all 1 ≤ a < 31.
Therefore 530000 ≡ 1 mod 31. On the other hand, 6123456 = 6123450+6 = 66 = 53 = 125 mod 31 ≡ 1
mod 31. So the given difference is a multiple of 31.

1.14. We will assume that the running time of multiplying n-bit numbers is M(n). According to problem
0.4 in Chapter 0, fib3 involves O(log n) arithmetic operations (multiplications). Since we are working
in arithmetic mod p, each intermediate result will be log p bits long, therefore the total running time
of fib3 is O(log n · M(log p)).

1.15. ax ≡ bx mod c ⇒ (a − b)x ≡ 0 mod c. If gcd(x, c) = 1 then a ≡ b mod c for all a, b. Conversely, if
ax ≡ bx ⇒ a ≡ b mod c for all a, b then assume c = nm. Take a, b such that a − b ≡ n mod c 6= 0
mod c. For x a multiple of m we can still get ax ≡ bx without having the second assertion. Therefore,
x cannot have common factors with c.

1.16. Let b = 15. The algorithm of repeated squaring will calculate a, a2, a4, a8 and then calculate a15 =
a · a2 · a4 · a8, with a total of 6 multiplications.
Now, consider the following algorithm: first compute a3 = a · a · a, then compute a6 = a3 · a3 and
finally a12 = a6 · a6. Calculate a15 = a12 · a3, with a total of 5 multiplications.

1.17. The iterative algorithm multiplies each time x into the result of the previous iteration. It performs y−1
iterations in total. In each iteration i, the size of the intermediate result mi is at most mi−1 + n bits

long. Therefore the total running time is O(n2+2n2+3n2+· · ·+(y−1)n2) = O(n2 · y(y−1)
2) = O(n2 ·y2).

The recursive algorithm has O(log y) iterations and during the i-th iteration, multiplies two 2i−1 - bit

long numbers. The total running time is O(n2+22n2+24n2+ · · ·+2⌊log y⌋−1n2) = O(n2 · (22)⌊log y⌋−1
3) =

O(n2 · y2). We conclude that the two algorithms have running times of the same order.

1.18. First, we compute the gcd by finding the factorization of each number: 210 = 2·3·5·7 and 588 = 22 ·3·72

therefore gcd(210, 588) = 2 · 3 · 7 = 42.
Next, using Euclid’s algorithm : gcd(210, 588) = gcd(210, 168) = gcd(168, 42) = 42.

1.19. We can show this by induction on n. For n = 1, gcd(F1, F2) = gcd(1, 1) = 1. Now say that the
inductive hypothesis is true for all n ≤ k. This implies that for n = k + 1

gcd(Fk+1, Fk+2) = gcd(Fk+1, Fk+2 − Fk+1) = gcd(Fk+1, Fk) = 1

Hence, the statement is true for all n ≥ 1.

1.20. (i) (20)−1 = 4 mod 79

(ii) (3)−1 = 21 mod 62

(iii) gcd(21, 91) = 7. Hence, no inverse exists!

(iv) (5)−1 = 14 mod 23

1.21. A number x has an inverse modulo 113 if and only if gcd(x, 113) = 1. For gcd(x, 113) 6= 1, either x = 0
or shares a common factor with 113. But the only factors of 113 are 11, 121 and 1331. Thus, a nonzero
number does not have an inverse if and only if it is a multiple of 11. The number of multiples of 11
between 1 and 1330 is 1331/11 − 1 = 120 (because we only consider numbers upto 1330). Thus, the
number of numbers that have an inverse is 1331 − 120 − 1 = 1210.

1.22. Since a has an inverse mod b it means that a, b are coprime so b also has an inverse mod a.

1.23. Suppose x1 and x2 are two distinct inverses of a mod N . Then,

x1 = x1 · 1 = x1 · ax2 = 1 · x2 = x2(mod N)

which is a contradiction.

5

1.24. Since p is a prime, all elements in the given range that are not a multiple of p have inverse mod pn.
Among the numbers {0, · · · , pn − 1} only pn−1 are multiples of p. Therefore, pn − pn−1 = pn−1(p− 1)
numbers have inverses.

1.25. By Fermat’s Little Theorem, 2126 ≡ 1 mod 127. We can write 2126 = 2125 · 2. So 2125 is the inverse
of 2 mod 127. By observation (or by extended Euclid’s algorithm) we deduce that 2 · 64 = 128 ≡ 1
mod 127, so 2125 ≡ 64 mod 127 since the inverse is unique.

1.26. Take p = 2, q = 5 so that pq = 10. First observe that 17(2−1)(5−1) = 174 = 1 mod 10. Hence,

171717

mod 10 = 17(1717 mod 4) mod 10

Also, 17 = 1 mod 4. So, 1717 mod 4 = 117 mod 4 = 1 This gives

171717

mod 10 = 17 mod 10 = 7 mod 10

so the least significant decimal digit is 7.

1.27. First calculate (p − 1)(q − 1) = 16 · 22 = 352. We use the extended Euclid algorithm to compute the
gcd(3, 352) and get the inverse d of e mod 352. We easily obtain e ·d ≡ 1 mod 352 ⇒ d ≡ −117 ≡ 235
mod 352.
The encryption of the message M = 41 is E(M) = Me mod N = 413 = 117 · 41 = 105 mod 391.

1.28. We first calculate (p − 1)(q − 1) which in our case is 6 · 10 = 60. Then we need to come up with an e
which is relatively prime to 60 so that it has an inverse d. We observe that e = 11 has gcd(11, 60) = 1
and 11 · 11 = 1 mod 60, therefore the values e = 11 and d = 11 are appropriate. Other good pairs are
(7, 43), (13, 37), (17, 53), (19, 59), (23, 47), (29, 29), (31, 31), (41, 41)).

1.29. (a) Here H is the same as in the example of pg.46 of the book, only with 2 coefficients instead of 4.
With the same reasoning as the proof of the Property in pg.46, we assume that X2 6= y2 and we want
to determine the probability that equation a1(x1 − y1) = a2(y2 − x2) holds. Assuming we already
picked a1, that probability is equal to 1/m, since the only way for the equation to hold is to pick a2 to
be (y2 − x2)

−1 · a1 · (x1 − y1) mod m. We can see that, since m is prime, (y2 − x2)
−1 is unique. Thus

H is universal. We need 2 · ⌈log m⌉ bits.
(b)H is not universal, since according to (a) we need a unique inverse of (y2 − x2) mod m. For this
to hold m has to be prime, which is not true (unless k = 1). We need 2k bits.

(c)We calculate P = Pr[f(x) = f(y)] for x 6= y. We have P =
∑m−1

i=1
1

(m−1)2 = 1
m−1 . Thus H is

universal. The total number of functions f : [m] → [m − 1] is (m − 1)m so we need m log(m − 1) bits.

1.30. (a)We assume for simplicity that n = 2k for some fixed k. We perform addition as follows: first
split the numbers into 2k−1 distinct pairs and perform addition within each pair, using lookahead
circuits. Continue by splitting the result into distinct pairs each time and perform addition within
each pair. We construct this way a complete binary tree with log n levels, each level using log m extra
levels for addition (if n was not a power of 2 the tree would simply not be complete). Total we have
O((log n)(log m)) depth.
(b) We let the i-th bit of r be the result of the addition of the i-th bits of all three numbers (i.e.
0 + 0 + 0 = 0, 0 + 1 + 0 = 1, · · · , 1 + 1 + 0 = 0, · · · , 1 + 1 + 1 = 1). We also let the i + 1 bit of s to be
the carry of the addition of the i-th bit of the three numbers (i.e. if two or three of the i-th bits of the
three numbers are 1, then the carry is 1). It is straightforward that x + y + z = r + s.
(c) In multiplication, we have to add together n copies of x appropriately shifted. We add these copies
by splitting the numbers into triplets and performing the trick from (b). We repeat for k levels until
there are less than 3 numbers left, i.e. when n · (2

3)k = 1 ⇒ k = log n
log 3−log 2 = O(log n).

6

1.31. (a) By the equation log N ! = log 1 + log 2 + · · · + log N we can easily see that N ! is approximately
Θ(N · log N) = Θ(N · n) bits long.
(b)We can compute N ! naively as follows:

factorial (N)
f = 1
for i = 2 to N

f = f · i
Running time : we have N iterations, each one multiplying two N · n-bit numbers (at most). By 1.30
the running time is O(N · log(N · n) = O(N · n).

1.32. (a) Assume that N consists of n bits. We can then perform a binary search on the interval [2n − 1, 1]
to find if it contains a number q such that q2 = N . Every iteration takes time O(n2) to square the
current element and O(n) to compare the result with N . As there are O(log 2n) iterations, the total
running time is O(n3).

(b) N = qk ⇒ log N = k log q ⇒ k = log N
log q

≤ log N for all q > 1. If q = 1, then we must have N = 1.

(c)We first give an algorithm to determine if a n-bit number N is of the form qk for some given k and
q > 1. For this , we use the same algorithm of part (a) only instead of squaring, we will raise numbers
to the k-th power and check if we obtain N . This will take O(n) iterations: moreover, each powering

operation takes time at most
∑k

i=1(in · n) = O(k2n2) . Hence, one run of this algorithm takes time
O(k2n3). To check if N is a power, we need to repeat this for all k ≤ log N ≤ n. This yields a running
time of O(n6).

1.33. The least common multiple (lcm) of any two numbers x, y can easily be seen to equal lcm(x, y) =
(x·y)/ gcd(x, y). We therefore need O(n3) operations to compute the gcd, O(n2) operations to multiply
x and y and O(2n · n) = O(n2) operations to divide. Total O(n3) running time.

1.34. Solution 1 :

We calculate the expected (average) value of the number of times we must toss a coin before it comes
up heads. Let X be the random variable corresponding to the number of tosses needed before coming
up heads.

E[X] =

∞∑

i=1

i · P [X = i] =

We now calculate P [X = i] : For a coin to come up heads (for the first time) in exactly i tosses, we
must have i − 1 tails followed by one head. It follows that P [X = i] = (1 − p)(i−1)p, for i ≥ 1. So,

E[X] =
∞∑

i=1

i · (1 − p)(i−1)p = p ·
d

dp
(

∞∑

i=0

−(1 − p)i)

The above powerseries
∑∞

i=0 −(1 − p)i converges for 0 < p < 1 and it is equal to − 1
1−(1−p) = − 1

p
.

After taking the derivative, we obtain

E[X] = p ·
1

p2
=

1

p

Solution 2 :

Let X be the random variable as in solution 1. Then E[X] the average number of tosses, with each
possibility weighted by its probability. With probability probability p we get heads in one toss of the
coin and with probability 1 − p, we get tails and need to start again and do another E[X] on average
(hence we do a total of E[X]+1 tosses with probability 1−p). Therefore E = p ·1+(1−p) · (1+E) =
1 + (1 − p)E .

7

1.35. (a) For a number 1 ≤ n < p to be its own inverse modulo p it is necessary to have n2 − 1 = k · p,
a multiple of p. This comes from the gcd formula : gcd(n, p) = 1 = nn − k · p. Equivalently,
n2 − 1 = (n − 1)(n + 1) ≡ 0 mod p. Solving for n we get n = +1, p − 1. We observe that for all
those values n is indeed its own inverse.

(b) Among the p − 1 numbers, 1 and p − 1 are their own inverses and the rest have a (different than
themselves) unique inverse mod p. Since inversion is a bijective function, each number a in
{2, · · · , p − 2} is the inverse of some number in the same range not equal to a. Thus,(p − 2)(p −
3) · · · 2 ≡ 1 mod p ⇒ (p − 1)! ≡ (p − 1) ≡ −1 mod p.

(c) Assume, towards contradiction that N is not a prime and also (N − 1)! ≡ −1 mod N . Then
(N − 1)! = −1 + kN ⇒ 1 = −(N − 1)! + kN which implies that gcd((N − 1)!, N) = 1. This is
false if N not a prime since there exists some prime q < N that is a multiple of N which appears
in the factorial product above.

(d) This rule involves calculating a factorial product which takes time exponential on the size of the
input. Thus, the algorithm would not be efficient.

1.36. (a) p ≡ 3 mod 4 implies that p = 4k + 3 ⇒ p + 1 = 4(k + 1) ⇒ (p+1)
4 = k + 1, an integer.

(b) By Fermat’s Little Theorem, ap−1 = 1 mod p, so (a
p−1

2 − 1)(a
p−1

2 + 1) = 0 mod p. Suppose

a
p−1

2 + 1 = 0 mod p and x is the square root of a; then we have xp−1 = −1 mod p, contradicting

Fermat’s Little Theorem. Hence, we must have a
p−1

2 − 1 = 0 mod p, which means a
p+1

2 = a mod p.

This shows that
(

a
p+1

4

)2

= a mod p. By a), p+1
4 is an integer, so that a

p+1

4 is well defined.

1.37. (a) Make the table and observe that each number has a different pair (i, j) of residues mod 3 and
mod 5.

(b) Assume , towards contradiction that both i and i′ with i 6= i′ have the same (j, k). Then
i = Ap + j = Bq + k and i′ = Cp + j = Dq + k. So i − i′ = (A − C)p = (B − D)q. Since p, q
are different primes, q has to divide (A−C) and p has to divide (B −D). So i− i′ = 0 mod pq.
Which means i = i′ since both are < pq.

Assume now, towards contradiction, that there is a particular pair (j, k) such that there is no
integer i < pq with the desired property. The total number of pairs is pq (which is the same as
the number of numbers mod pq) so there must be at least two different numbers i, i′ that have
the same pair (j′, k′), contradiction.

(c) . By (b) it is enough to show that the expression in brackets has the property i = j mod p and
i = k mod q.

i = {j · q · (q−1 mod p) + k · p · (p−1 mod q)} mod pq mod p

= {j · q · (q−1 mod p) + k · p · (p−1 mod q)} mod p mod pq = j

and

i = {j · q · (q−1 mod p) + k · p · (p−1 mod q)} mod pq mod q

= {j · q · (q−1 mod p) + k · p · (p−1 mod q)} mod q mod pq = k

(d) Part (b) is immediately extended to more than two primes. Part (c) will give the expression for
i :

i = {j1 · q2 · q3 · · · · qn((q2 · q3 · · · · qn)−1 mod q1)+

+ · · ·+

+jn · q1 · q2 · · · · qn−1((q1 · q2 · · · · qn−1)
−1 mod qn) mod p1p2 · · · pn

8

1.38. We will show (a) and (b) together. For (b) observe that is we break a decimal number N into r-tuples,
say, NkNk−1 · · ·N1 then N = N1 +N2 ·10r + · · ·+Nk ·(10r)k−1. Therefore, for our divisibility criterion,
we try to achieve the following :N mod p = N1 + N2 · 10r + · · ·+ Nk · (10r)k−1 = N1 + N2 + · · ·+ Nk.
For this equation to hold, we need 10r = 1 mod p. From Fermat’s Little Theorem, we know that
10p−1 = 1 mod p, so looking for the smallest such r we will get a divisor of p − 1. For p = 13 we can
check that the choice r = 13 − 1 = 12 is the smallest choice for r, while for p = 17 the smallest choice
is r = 17 − 1 = 16.

1.39. From Fermat’s Little Theorem, we know that ap−1 = 1 mod p. Therefore,

abc

= abc mod (p−1) mod p

we first need to calculate bc mod (p − 1). Note that this is modular exponentiation and is hence
doable in polynomial time. We repeatedly square b modulo (p − 1) and compute bc mod (p − 1) in
the same way as computing the nth power of a matrix. Since we do O(n) multiplications, each taking
O(n2) time, the total time is O(n3). Let bc mod (p − 1) = d. Then, by the equality abc

mod p = ad

mod p, all we need to do is use again the repeated squaring algorithm. So the total running time of
our algorithm is O(n3).

1.40. Assume, towards contradiction that N is a prime and still x is a non-trivial square root of 1 mod N .
Then x2 = 1 + kN ⇒ (x − 1)(x + 1) = kN . Since N is a prime it must divide at least one of (x − 1)
,(x + 1) which leads to conclude x ≡ 1 or −1 mod N , contradiction.

1.41. (a) Assume a ≡ y2 mod N for 1 ≤ y < N . Then x2 − y2 ≡ 0 mod N ⇒ (x − y)(x + y) ≡ 0 mod N .
This means either x− y ≡ 0 mod N ⇒ x = y since both x, y < N or x + y ≡ 0 mod N ⇒ x = N − y
since x, y < N . These are the only two possible values.
(b)We will first show that for any two numbers x, y in the range {1, 2, · · · , N−1

2 } we have x2 6= y2

mod N . Assume towards contradiction that x2 ≡ y2 ⇒ (x − y)(x + y) ≡ 0. Since N is prime, x 6= y
this means x + y ≡ N . But both x, y ≤ N−1

2 so x + y ≤ N − 1, contradiction.

Therefore, each of those N−1
2 numbers defines a quadratic residue mod N . Also, from (a), the rest of

the N−1
2 numbers in the range {N−1

2 +1, · · ·N −1} lead to the same residues. Adding 0 as a quadratic

residue, we have exactly N+1
2 of them.

(c)Take, say, N = 15 and a = 1 then the equation x2 ≡ 1 mod 15 has solutions 1,−1, 4.

1.42. We just need to calculate the inverse of e mod (p−1). But this we can do by using Extended Euclid’s
algorithm for the gcd(e, p − 1) = 1.

1.43. First pick an appropriate message m such that m
ed−1

2 is neither 1 nor −1 mod N . Then med−1 ≡ 1

mod N ⇒ (m
ed−1

2 −1)(m
ed−1

2 +1) ≡ 0 mod N ⇒ one of the gcd(N, (m
ed−1

2 −1)) or gcd(N, (m
ed−1

2 +1))
is a non-trivial factor of N . Since N = qp and we have determined, say p, we can just divide N/p = q.

1.44. The three messages that Alice sends are M3

modN1, M3 mod N2, M3 mod N3, where M < min{N1, N2, N3}. By the Chinese remainder theorem
there is a unique number x < N1 ·N2 ·N3 with x = M3 mod N1,x = M3 mod N2,x = M3 mod N3.
We observe that M3 < N1 · N2 · N3 and also has the above residues. Therefore, we can just compute
M3 by the equations in 1.37d) and then take the cubic root i Z (recall we are not able to take roots in
ZN , but this is not necessary here).

1.45. a) The digital signature scheme can be used to both authenticate the identity of the sender of the
message and to ensure that the message has not been altered by a third party during communi-
cation.

b) verify((N, e),Md,M) can be implemented by checking whether (Md)e mod N equals M . Then,
if the signature was created by the private key d, we have (Md)e mod N = (Me)d mod N = M

9

mod N = M , by the correctness of the RSA protocol. Conversely, if an adversary was able to sign
given only (N, e), the adversary would be able to exponentiate by d mod N , which would allow
him to decrypt, contradicting the security of the RSA protocol. Hence, if the RSA is secure, so is
this scheme for digital signatures.

c) I picked p = 137, q = 71. Hence N = pq = 9727 and Φ(N) = (p− 1)(q − 1) = 9520 = 24 · 5 · 7 · 17.
Then, I chose e = 99, which is coprime to Φ(n). d must then be the inverse of e mod Φ(n), that
is 6539, found by running Extended Euclid. The first letter of my name is L and I choose it to
map to binary using the ASCII code, for which L = 76. Then, the signature of this first number
is 7699 mod 9727 = 4814. Finally, 481499 mod 9727 = 76, as required.

d) 391 can be factored as 17 · 23. Then, Φ(391) = 16 · 22 = 352. Then d = (e)−1 mod 352 = 145,
by Extended Euclid. In fact, 145 ∗ 17 = 2465 = 1 mod 352, as required.

1.46. a) When Eve intercepts the encrypted message Me mod N sent by Alice to Bob, she can just ask
Bob to sign it for her with his private key, to obtain (Me)d mod N = M , by the correctness of
the RSA.

b) In this case, Eve can pick k coprime to N at random and ask Bob to sign Me · ke mod N . This
will yield (Mk)ed mod N = Mk mod N . Then Eve can use Extended Euclid to obtain k−1

mod N and multiply by such inverse to find M . Notice that in this way Bob’s signatures are
distributed uniformly over all numbers invertible mod N , as Mk is equally likely to be any of
such numbers.

