1. For the webnotes brute force set cover algorithm, for this input, what cover is found? What is its size? Give another cover of the same size.

subset elements 0 1 2 3 4 5 6 0 * * 1 * * * 1 * * * * 2 * * 3 * 3 * * 4 * * * * 5 * * * * * 6 * * * 7 * * *

- 2. Is this CNF formula satisfiable? If yes, give a satisfying assignment; if no, explain why.
 - [-1, 2, -4] [-1, -2, 4] [-1, -3, -4]3, 4] [-1, [-1, 3, -4] Γ 1, 2, -3] Γ 1, -2, 41 1, -2, -4] Γ 1, 3, 4] [3, -4] Γ 2,

Recall -1 means $\neg x_1$, 2 means x_2 , etc. So the above represents the formula

 $(\neg x_1 \lor x_2 \lor \neg x_4) \land \ldots \land (x_2 \lor x_3 \lor \neg x_4).$

3. Find a largest clique in this graph.

 Verify that (T, T, F, T, F, F) satisfies the CNF formula here. As a function of variables n and clauses m, give the runtime of your verification method.

Ε	-4,	-5,	6]
Ľ	-4,	5,	-6]
Ε	-2,	4,	-5]
Ľ	-2,	5,	-6]
Ε	-1,	-3,	-4]
Ε	-1,	-3,	4]
Ε	-1,	4,	-6]
Ľ	1,	-4,	5]
Ε	1,	-3,	-5]
Ľ	1,	-3,	4]
Ľ	1,	5,	-6]
Ε	2,	5,	6]
Ľ	3,	-5,	-6]
Ε	4,	-5,	6]
Ľ	4,	5,	-6]
Ε	4,	5,	6]

5. For each of the following: is the problem in NP? in P? Explain.

clique Given a graph G and an integer k, does G have a k-clique?

satisfiability Given a boolean formula f in CNF, is f satisfiable?

distance Given a graph G, an integer k, and nodes a and b, is there a path between a and b with at most k edges?

long path Given a graph G and an integer k, does G have a path (no repeated vertex) with at least k edges?

set cover Given a set S of subsets of a set Vand an integer k, is there a subset of at most kelements of S (each is a subset of V) that covers V?

0-1 knapsack Given a set of items, their weights and values, a capacity C, and an integer k, is there a subset of items with total weight at most C and value at least k?

6. Give a version of the square root problem that is in NP.

1. Min cover found is $\{0,5,7\}$, size 3.

0 - - - * - * -5 * * * - - * * 7 * - - - * * -

Another min cover is $\{k,5,7\}$, where k is any of $\{1,2,4\}$. Another min cover is $\{2,4,7\}$.

- 2. yes. (T F T F).
- {2,3,4,5} is a 4-clique. For each node x, remove x from the graph, and notice that the resulting graph is not a clique. So there is no 5-clique. So every 4-clique is a largest clique.
- 4. Verify that each clause is satisfied. E.g. the assignment has x_5 false, so the first clause $\neg x_4 \lor neg x_5 \lor x_6$ is satisfied.

Assuming you can access literals in constant time, and assignment values in constant time, the runtime is $\Theta(nm)$.

5. Each of the problems is in NP.

Distance is in P. Each of the other problems is NP-complete. No NP-complete problem is known to be in P (and if it were, we would have P=NP, and whoever had proved this would be famous).

6. For an integer n, call t the integer root of n if $t * t \le n$, and (t + 1) * (t + 1) > n.

This problem is in NP:

integer root Given an integer n and an integer t, is t the the integer root of n?

What do you think? Is this problem in P?