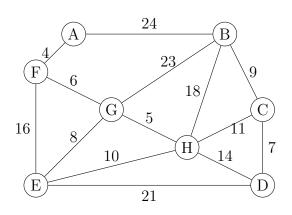
1. Continue the trace of Prim's MST from node D. At each step, show the parent and cost arrays, and give the edge added to the MST.



parent	cost								
ABCDEFGH	А	В	С	D	Е	F	G	Η	pick
D	-	-	-	0	-	-	-		D
DDDD	-	-	7	0	21	-	-	14	С

- 2. Does Kruskal's MST algorithm work correctly if edges can have negative weights? Explain briefly.
- 3. For each edge in the above graph, multiply its weight by -1. Now trace Kruskal's algorithm. Give the weight of the final MST.
- 4. (i) Let G be a connected acyclic graph with $n \geq 2$ nodes. Let $P = (v_1, \ldots, v_t)$ be a longest path of G. Prove that v_2 is the only node in G adjacent to v_1 , that $G^- = G v_1$ is connected, and that G^- is acyclic.

(ii) Using (i), prove by induction on n that G has n-1 edges.

(iii) Using (ii), prove that an acyclic graph with n nodes and c components has n - c edges.

```
5. def find(v,P):
  while P[v] != v:
    v = P[v]
  return v
def u(v,w,P): # union
  rv,rw = find(v),find(w)
  P[rv] = rw
def uBR(v,w,P,R): # union by rank
  rv,rw = find(v),find(w)
       R[rv] < R[rw]:
  if
    P[rv] = rw
  elif R[rv] > R[rw]:
    P[rw] = rv
  else:
    P[rv] = rw
    R[rw] += 1
```

An algorithm uses the above union/find algorithms. Here are the current parent values:

node	А	В	С	D	Е	F	G
Р	А	В	С	D	Е	F	G
R	0	0	0	0	0	0	0

(i) Give more meaningful names for rv, rw, P, R.

(ii) Draw the current union/find forest.

(iii) Show P, R, and the forest after the following operations: u(A,B) u(B,C) u(A,D) u(E,F) u(B,F).

(iv) Repeat (iii) using uBR() instead of u().

1.	ABCDEFGH	А	В	С	D	Е	F	G	Η	pick
	D	-	-	-	0	-	-	-	-	D
	DDDD	-	-	7	0	21	-	-	14	С
	-CDDDC	-	9	7	0	21	-	-	11	В
	BCDDD-BC	24	9	7	0	21	-	23	11	Н
	BCDDH-HC	24	9	7	0	10	-	5	11	G
	BCDDGGHC	24	9	7	0	8	6	5	11	F
	FCDDGGHC	4	9	7	0	8	6	5	11	А
	FCDDGGHC	4	9	7	0	8	6	5	11	E

2. yes. we just want a tree whose sum of edges is minimum. at each point, we pick the available edge with minimum weight. there is no problem if edge weights are negative. if you take a problem with negative weight edges, and subtract the most negative weight from all edges, you will get a graph with non-negative edge weights, and the set of edges picked, and the order in which they are picked, will be the same.

3. AB -24 BG -23 ED -21 BH -18 FE -16 HD -14 HC -11

4. (i) v_1 is not adjacent to any other vertex in P, else there is a cycle. v_1 is not adjacent to any vertex not in P, else P can be extended into a longer path.

If there is a path in G between two nodes, not including v_1 , that uses v_1 , then the path must at some point go from v_2 to v_1 and immediately back to v_2 . So removing v_1 from the path leaves a path between the two nodes. So removing v_1 from G leaves a connected graph.

(ii) Assume that this holds for all n up to a fixed integer t. Consider a graph G with t + 1 nodes. Find the end of a longest path, call this node v_1 . Removing v_1 leaves a graph with number of nodes and number of edges both decreased by 1. So the number of edges in G is the number of edges in $G' = G - v_1$ plus 1. By our inductive hypothesis, the number of edges in G' is one less than the the number of nodes in G', so (t + 1 - 1) - 1. So, the number of edges in G is one more than this, so (t + 1 - 1) - 1 + 1 = (t + 1 - 1). So G has t + 1 - 1 edges, i.e. one less than the number of nodes. So we are done.

(iii) Let $n_1 \ldots n_c$ be the number of nodes in the *c* components of *G*. Then the number of edges in *G* is $(n_1 - 1) + \ldots n_c - 1 = (n_1 + \ldots n_c) - (1 + \ldots + 1) = n - c$. 5. (i) rootv, rootw, parent, rank

(ii) each node is in a tree with one node(iii)

node P R	В	B C O	D	F	F	F	G
(iv)							
node P		B F	Ũ	-	_	-	~
R	0	-	-	-	0	-	~