
cmput 204 seminar 7 fall 2015

1. Continue the trace of Prim’s MST from node D.
At each step, show the parent and cost arrays,
and give the edge added to the MST.

A B

C

DE

F

G

H

24

4
9

18

23

7
11

21

14

16

10
8

6

5

parent cost

ABCDEFGH A B C D E F G H pick

---D---- - - - 0 - - - D

--DDD--D - - 7 0 21 - - 14 C

2. Does Kruskal’s MST algorithm work correctly
if edges can have negative weights? Explain
briefly.

3. For each edge in the above graph, multiply its
weight by −1. Now trace Kruskal’s algorithm.
Give the weight of the final MST.

4. (i) Let G be a connected acyclic graph with
n ≥ 2 nodes. Let P = (v1, . . . , vt) be a longest
path of G. Prove that v2 is the only node in G

adjacent to v1, that G
− = G− v1 is connected,

and that G− is acyclic.

(ii) Using (i), prove by induction on n that G

has n-1 edges.

(iii) Using (ii), prove that an acyclic graph with
n nodes and c components has n− c edges.

5. def find(v,P):

while P[v] != v:

v = P[v]

return v

def u(v,w,P): # union

rv,rw = find(v),find(w)

P[rv] = rw

def uBR(v,w,P,R): # union by rank

rv,rw = find(v),find(w)

if R[rv] < R[rw]:

P[rv] = rw

elif R[rv] > R[rw]:

P[rw] = rv

else:

P[rv] = rw

R[rw] += 1

An algorithm uses the above union/find algo-
rithms. Here are the current parent values:

node A B C D E F G

P A B C D E F G

R 0 0 0 0 0 0 0

(i) Give more meaningful names for rv,rw,P,R.

(ii) Draw the current union/find forest.

(iii) Show P, R, and the for-
est after the following operations:
u(A,B) u(B,C) u(A,D) u(E,F) u(B,F).

(iv) Repeat (iii) using uBR() instead of u().

1. ABCDEFGH A B C D E F G H pick

---D---- - - - 0 - - - - D

--DDD--D - - 7 0 21 - - 14 C

-CDDD--C - 9 7 0 21 - - 11 B

BCDDD-BC 24 9 7 0 21 - 23 11 H

BCDDH-HC 24 9 7 0 10 - 5 11 G

BCDDGGHC 24 9 7 0 8 6 5 11 F

FCDDGGHC 4 9 7 0 8 6 5 11 A

FCDDGGHC 4 9 7 0 8 6 5 11 E

2. yes. we just want a tree whose sum of edges is
minimum. at each point, we pick the available
edge with minimum weight. there is no problem
if edge weights are negative. if you take a prob-
lem with negative weight edges, and subtract
the most negative weight from all edges, you will
get a graph with non-negative edge weights, and
the set of edges picked, and the order in which
they are picked, will be the same.

3. AB -24 BG -23 ED -21 BH -18

FE -16 HD -14 HC -11

4. (i) v1 is not adjacent to any other vertex in P ,
else there is a cycle. v1 is not adjacent to any
vertex not in P , else P can be extended into a
longer path.

If there is a path in G between two nodes, not
including v1, that uses v1, then the path must
at some point go from v2 to v1 and immediately
back to v2. So removing v1 from the path leaves
a path between the two nodes. So removing v1
from G leaves a connected graph.

(ii) Assume that this holds for all n up to a fixed
integer t. Consider a graph G with t+ 1 nodes.
Find the end of a longest path, call this node
v1. Removing v1 leaves a graph with number of
nodes and number of edges both decreased by
1. So the number of edges in G is the number of
edges in G′ = G − v1 plus 1. By our inductive
hypothesis, the number of edges in G′ is one less
than the the number of nodes in G′, so (t+ 1−
1)−1. So, the number of edges in G is one more
than this, so (t + 1 − 1) − 1 + 1 = (t + 1 − 1).
So G has t + 1 − 1 edges, i.e. one less than the
number of nodes. So we are done.

(iii) Let n1 . . . nc be the number of nodes in the
c components of G. Then the number of edges
in G is (n1 − 1) + . . . nc − 1 = (n1 + . . . nc) −
(1 + . . .+ 1) = n− c.

5. (i) rootv, rootw, parent, rank

(ii) each node is in a tree with one node

(iii)

node A B C D E F G

P B C D F F F G

R 0 0 0 0 0 0 0

(iv)

node A B C D E F G

P B F B B F F G

R 0 1 0 0 0 2 0

