
cmput 204 seminar 3 fall 2015

1. (i) Roughly, how many numbers less than or
equal to 1000 are prime?

(ii) Roughly, what is the probability that an
integer in [1 ... 1000] is prime?

(iii) Exactly, how many numbers less than
or equal to 1000 are prime?

(iv) Exactly, what is the probability that an
integer in [1 ... 1000] is prime?

(v) Using the Miller-Rabin algorithm from
class, you randomly pick 1000 bit numbers
until you find one that is probably prime.
On average, how many picks do you make
before you find a probable prime?

2. Show the recursive calls, in order made, from
Karatsuba(1752,3946). Assume the deci-
mal version of the algorithm, and that a re-
cursive call is made only when the first pa-
rameter is at least 11.

3. Sort the following functions by increasing Θ
order of complexity.
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solutions

1. (i) about 1000/(ln 1000− 1) ≈ 169

(ii) about .169

(iii) run a prime checker and count: 168

(iv) 168/1000 = .168

(v) The probability that a 1000 bit number
is prime is roughly p = 1/(ln(21000) − 1) ≈
.0014 . . .. So the average number of picks is
1/p ≈ 692 if all possible numbers are consid-
ered. But the algorithm only considers odd
numbers, so the average number of picks is
1/2 this, so ≈ 346.
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