1. (i) Roughly, how many numbers less than or equal to 1000 are prime?

(ii) Roughly, what is the probability that an integer in $[1 \ldots 1000]$ is prime?

(iii) Exactly, how many numbers less than or equal to 1000 are prime?

(iv) Exactly, what is the probability that an integer in $[1 \ldots 1000]$ is prime?

(v) Using the Miller-Rabin algorithm from class, you randomly pick 1000 bit numbers until you find one that is probably prime. On average, how many picks do you make before you find a probable prime?

- 2. Show the recursive calls, in order made, from Karatsuba(1752,3946). Assume the decimal version of the algorithm, and that a recursive call is made only when the first parameter is at least 11.
- 3. Sort the following functions by increasing Θ order of complexity.

```
n^{2.5}
n^{1.01}
n + 200
3^n
n^{.5}
n^{2/3}
9n + (\lg n)^3
2^{n+1}
lg(3n)
\ln(n^5)
100n + \lg n
n \lg^3 n
5^{\lg n}
n2^n
2^n
n + 100
```

solutions

- 1. (i) about $1000/(\ln 1000 1) \approx 169$
 - (ii) about .169
 - (iii) run a prime checker and count: 168
 - (iv) 168/1000 = .168

(v) The probability that a 1000 bit number is prime is roughly $p = 1/(\ln(2^{1000}) - 1) \approx$.0014.... So the average number of picks is $1/p \approx 692$ if all possible numbers are considered. But the algorithm only considers odd numbers, so the average number of picks is 1/2 this, so ≈ 346 .

- 2. K(1752,3946)
 - K(17,39) K(1,3) K(7,9) K(8,12) K(52,46) K(5,4) K(2,6) K(7,10) K(69,85) K(6,8) K(9,5) K(15,13) K(1,1) K(5,3) K(6,4)
- 3. $\ln(n^5) \lg(3n)$ $\in \Theta(\log n)$ $n^{.5}$ $\in \Theta(n^{.5})$ $n^{2/3}$ $\in \Theta(n^{2/3})$ $n+100 n+200 9n+(\lg n)^3 100n+\lg n \in \Theta(n)$ $\in \Theta(n \log^3 n)$ $n \lg^3 n$ $n^{1.01}$ $\in \Theta(n^{1.01})$ $\in \Theta(n^{\lg 5}) = \Theta(n^{2.32...})$ $5^{\lg n}$ $n^{2.5}$ $\in \Theta(n^{2.5})$ $2^n \ 2^{n+1}$ $\in \Theta(2^n)$ $n2^n$ $\in \Theta(n2^n)$ 3^n $\in \Theta(3^n)$