1. For each, show output for euc(385,623).

```
def euc(a,b):
 print a,
 while b>0:
     a, b = b, a % b
     print a,
 prin
```

2. def eee(a,b):
 if (b==0): return a

return eee(b, a-b)

- (i) Give the first six nodes in the recursion tree for eee(1,2).
- (ii) Does eee(1,2) terminate? Justify with a statement that can be checked by induction.
- 3. Show the computation of $419^{560} \mod (561)$ using the algorithm from class.
- 4. (i) Using the formula for the class webpage, give the number of bits in the binary representation of decimal 123456789.
 - (ii) How can you check your answer to (i)?
 - (iii) As precisely as you can, give the number of bits in the binary representation of 10^{100} .
 - (iv) As precisely as you can, give the number of bits in the binary representation of 10^t .
- 5. Consider isComposite(n,t,True) from class. (i) Explain output 8911 192 1527 yields root 267.
 - (ii) Explain output 8911 2270 8302 fails Fermat.
 - (iii) Assume isComposite(n,5,) returns True. What is the probability that n is composite? What assumption does this depend on?
 - (iv) Assume isComposite(n,2,) returns False. What is the probability that n is composite? What assumption does this depend on?

solutions

- 1. 385 623 385 238 147 91 56 35 21 14 7
- 2. (i)
 - (1, 2)
 - (2, -1)
 - (-1, 3)
 - (3, -4)
 - (-4, 7)
 - (7,-11)
 - (ii) No. Define b_n as the value b from the nth call, where $b_1=2$ is from the first call. This is a Fibonacci-style sequence: for all $n \geq 3$, $b_n=b_{n-2}-b_{n-1}$. It is sufficient to prove, for all odd $n \geq 3$, $b_n > b_{n-2}$. So b_n gets arbitrarily large, and never reaches 0.
- 3. 560 280 140 70 35 17 8 4 2 1
 all operations are mod 561
 a^1 = 419
 a^2 = (a^1)^2 = 419*419 = 529
 a^4 = (a^2)^2 = 529*529 = 463
 a^8 = (a^4)^2 = 463*463 = 67
 a^17 = a*(a^8)^2 = 419*67*67 = 419
 a^35 = a*(a^17)^2 = 419*419*419 = 56
 a^70 = (a^35)^2 = 56*56 = 331
 a^140 = (a^70)^2 = 331*331 = 166
- 4. (i) $1+|\lg 123456789| = 1+|\lg 26.8...| = 27$

 $a^280 = (a^140)^2 = 166*166 = 67$

 $a^560 = (a^280)^2 = 67*67 = 1$

(ii) Convert to binary and count the bits:

0b1110101101111100110100010101

- (iii) $1 + \lfloor \lg 10^{100} \rfloor = 1 + \lfloor 100 \lg 10 \rfloor = 1 + \lfloor 100(3.321...) \rfloor = 1 + 332 = 333$
- (iv) $1 + \lfloor \lg 10^t \rfloor = 1 + \lfloor t \lg 10 \rfloor$

- 5. To answer this question, you need to read the code in the algorithm.
 - (i) First number 8911 is n. Next number 192 not followed by yields or fails, so this must be a non-witness (i.e. passed both Fermat and Euclid tests). Next number 1527 followed by yields root 267, so 1527 must be a witness, in computing 1527^{n-1} algorithm discovered that $267^2 = 1 \pmod{n}$, failing the Euclid test.

To check: confirm $192^{n-1} = 1 \pmod{n}$ and $267^2 = 1 \pmod{n}$, and 267 is one of the intermediate powers considered in computing $1527^{n-1} \pmod{n}$.

(ii) 8911 is n. 2270 is non-witness. 8302 is witness that fails the Fermat test.

To check: confirm $2270^{n-1} = 1 \pmod{n}$ and $8302^{n-1} \neq 1 \pmod{n}$.

- (iii) n is composite with probability 1, because a witness was found. This relies on the correctness of Euclid's theorem for non-trivial square roots of 1, and Fermat's theorem about a^{n-1} (mod n).
- (iv) n is prime with probability at least $1 1/(4^t)$ where here t = 2, so probability at least 1 1/16 = 15/16. The assumes that the psuedorandom number generator selected the two trial values of a uniformly randomly from [2, ..., n-2].