cmput 204 seminar 10 fall 2015
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1. The above diagrams shows a backtrack search
that stops once a satisfying assignment is found.
(ii) Show the diagram if search continues until
all satsifying assignments are found, and list all
satisfying assignments.

4. Below is the implication digraph for f =
2. Trace DPLL sat solver on the formula

[0 123][0 -11[1 -2][2 -3]. [f1,-2],101,31,0-2,-31,[2,4],

. . . . . [_3:_4]:[33_513[3:5]]-
3. Below is the implication digraph for f =

[[1,-5],[-2,-3],[3,4], [-4,-5], [2,5], [-1,-5]]. Let ¢ = [3,8], and let /= = f = ¢, Le. f with ¢
Let f' = fA [-2,-4]. Draw the implication removed. Draw the implication digraph for f—,

digraph for f', and explain whether f' is and explain whether f~ is satisfiable.

satisfiable. g @
(4)—~(2)

S

5. Explain carefully why 2sat is in P.




1. Assignments found are 1000, 1100, 1117.
[0 12 3][0-1][1 -2][2 -3]
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2. The formula has no unit clauses, but has pure
literal xq, so set xy true. Now the reduced for-
mula is [1 -2] [2 -3]. Again, there are no unit
clauses, but two pure literals, 1 and —x3, so set
one of these true, say —r3. So set x3 false. Now
the reduced formula is [1 -2]. Again, there are
no unit clauses, but two pure literals. Setting
either one true satisfies the assignment.

4. satisfiable, since the digraph is acyclic. {-5} and
{1} are sink sccs, so set 5 false and 1 true and
remove from the digraph nodes {1,-1,5,-5}. Now
{-3} is the only sink scc, so set 3 false and re-
move nodes {3,-3}. Now {2} and {4} are sink
sces, so set 2 true and 4 true, and we have a
satisfying assignment 11010.

3. unsatisfiable. There is a directed cycle (2 -4 3 g @
-2 5 1 -5) that contains a literal = and its nega-
tion (here, = is 2 or 5), so there is no satisfying 9 Q
assignment.

Assume n variables and m clauses. Assume
there are no unit clauses (if there are, set the
variable which satisfies that clause, remove that
variable from the digraph, and continue), and
there are no clauses [x, -x] (if there are, re-
move the clause). So each literal x can be in a
clause with at most 2n-2 other literals, so m is
at most n(2n — 2) € O(n?).

3)
5.

The implication digraph has 2n nodes and 2m €
O(n?) arcs. Finding sccs takes only linear time,
so O(n+m) = O(n?). Removing a sink scc can
be done in linear time, and so can assigning the
nodes from this scc, and updating the digraph.
There are at most 2n updates, since each re-

moves at least one node, and each update takes
O(n?) time.

So the total time is in O(n?).



