
cmput 204 asn 1 solutions fall 2015

1. Your number k depends only on the
value n′ = n (mod 89), where n is your
student number. The following chart
shows the values k, depending on the val-
ues n′, starting from 0. E.g. the first row
is for values 0,1,2, . . . , the next row for
values 10,11,12, . . . , etc.

11 12 15 81 27 60 24 46 75 16

29 68 63 34 62 59 89 47 31 93

83 58 61 71 41 98 14 94 37 44

25 57 56 85 66 35 91 88 72 19

32 69 21 38 33 78 73 90 42 79

92 39 23 20 76 45 26 55 54 86

67 74 17 97 13 70 40 50 53 28

18 80 64 22 52 49 77 48 43 82

95 36 65 87 51 84 30 96 99

2. The answer depends on k. E.g., for k =
87, 3787.09 = 61.52 + 4.84
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3. (i) This code outputs the conversion.

def display(n):

if n>1: display(n/2)

print n,

def db(n):

if n>1: db(n/2)

print n%2,

n = 587

display(n)

print ’’

db(n)

print ’’

1 2 4 9 18 36 73 146 293 587

1 0 0 1 0 0 1 0 1 1

(ii) E.g., for k = 87, 587 = 242 + 11.
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4. def fib(n):

if n<2: return n

return fib(n-1) + fib(n-2)

(i) Here, fib(t-2) and fib(t-1) are
defined, so t ≥ 2, so fib(t) returns
fib(t-1) + fib(t-2), so

fib(t) = fib(t-1) + fib(t-2) since t ≥ 2

≥ 1.6t−3 + 1.6t−4 assumption

= (1.6)1.6t−4 + 1.6t−4 arithmetic

= (1.6 + 1)1.6t−4 arithmetic

= (2.6)1.6t−4 arithmetic

> (2.56)1.6t−4 arithmetic

= (1.62)1.6t−4 arithmetic

= 1.6t−2 arithmetic

(ii) fib(0) = 0 < 1.6−2. fib(1) = 1 ≥

1.6−1. fib(2) = 1 = 1.60. By (i) and
induction, fib(k) ≥ 1.6k−2 for all k ≥ 3.
So Q is the set of all integers greater than
or equal to 1.

(iii)

• No, this does not imply fib(n) ∈

O(1.6n).

Assume by way of contradiction that
fib(n) ∈ O(1.6n). Then there is a pos-
itive constant c such that fib(n) ≤ c1.6n

for all positive integers n. But we saw in
class that there is a positive constant c′

such that fib(n) ≥ c′1.618n for all posi-
tive integers n. So we would have

c′1.618n
≤ fib(n) ≤ c1.6n so

c′1.618n
≤ c1.6n so

1 ≤
c1.6n

c′1.618n
so

1 ≤

( c

c′

)

(

1.6

1.618

)n

but

this is not possible: c and c′ are pos-
itive constants, so c′/c is a positive
constant, but (1.6/1.618)n gets arbi-
trarily close to 0 as n gets large, so
for some n (1.6/1.618)n < c′/c and
(c/c′)(1.6/1.618)n is less than 1, contra-
diction.

• Yes, this implies that fib(n) ∈ Ω(1.6n),
since from (ii) fib(n) ≥ c1.6n for all posi-
tive integers n, where c = 1.6−2 = 1/2.56
is a positive constant. Thus, from the
definition of Ω, fib(n) ∈ Ω(n).

• No. A function f(n) is in Θ(1.6n) if
and only if it is in both O(1.6n) and
Ω(1.6n).



5. The following code will print the recur-
sion tree upside down.

def rm(x,y):

if y==0:

print ’(’,x,y,0,’)\n |’

return 0

elif 0==y%2:

t = 2*rm(x,y/2)

print ’(’,x,y,t,’)\n |’

return t

else:

t = x+2*rm(x,y/2)

print ’(’,x,y,t,’)\n |’

return t

To the right is the tree for the call
(191,902):

6. 9803 is odd, so rmult(x,9803)

returns x + 2*rmult(x,9803/2)

= x + 2*rmult(x,4901).

4901 is less than 9802, so by our assump-
tion rmult(x,4901) returns x*4901.

So x + 2*rmult(x,4901) =

x + 2*(x*4901) = x + 9802*x =

9803*x.
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7. (i) Θ(n). The algorithm adds numbers
bit by bit, starting from the least signif-
icant bit. There is at most one carry bit
from each add. So the total number of
adds will be either n or n + 1, so Θ(n).
Each add of two bits plus a carry bit
takes constant time. So Θ(n) × Θ(1) =
Θ(n) time.

(ii)

• We expect the ratio to be

c(2k)2

ck2
=

c4k2

ck2
= 4.

• We expect the ratio to be

c(2k)3

ck3
=

c8k3

ck3
= 8.

(iii) From the experimental timing ex-
ample in the lecture notes, the runtime
ratio t(2n)/t(n) is around 4, so we expect
that the runtime is in Θ(n2).

The loop iterates exactly n times.

Define f(t) as the t’th Fibonacci number.
After t iterations, the sum is f(t).

Consider any fixed integer t. From the
seminar, the number of bits in f(t) is in
Θ(t). From the lecture notes, the time to
add two numbers whose sum has k bits
is in Θ(k), so to add two numbers whose
sum has Θ(t) bits is in Θ(t).

So the runtime of this algorithm is given
by the sum

n
∑

t=1

Θ(t) = Θ(
n

∑

t=1

t) = Θ(n2) .

So the runtime is in Θ(n2), as expected.


