seminar 9

1. Trace Kruskal's MST algorithm. Consider edges by non-decreasing weight; if there is a tie, consider the edge which is first in alphabetic order. In the UF structure, use each root vertex as component label. Each time find(x) is called, give the vertex x and the number of parent links followed to find the root. If x and y have the same rank, then union(x,y) sets parent[root(x)] to root(y). List MST edges as they are picked. Update UF parent values as they change.

	В	С	D	E	F	G
А	8	8	9	13	4	11
В		0	9	12	1	18
С			3	7	15	6
D				1	13	9
Е					18	6
F						5

find() calls: links followed: MST edges:

union-find data structure: node A B C D E F G parent A B C D E F G

2. Repeat the above for Prim's algorithm, starting from vertex G.

find() calls:
links followed:
MST edges:

union-find data structure: node A B C D E F G parent A B C D E F G

3. Prove by induction: in an UF data structure, with union-by-rank, for all integers $t \ge 0$, the number of nodes in a tree with depth d is at least 2^d .