
cmput 204 seminar 1: solutions 2014 (revised Sep 12)

Define α as the golden ratio, i.e. (1 +
√

5)/2.

Define f(n) as the nth Fibonacci number:

f(0) = 0, f(1) = 1, and, for all integers t ≥ 2, f(t) = f(t − 1) + f(t − 2).

Define T (n) so that T (0) = T (1) = 4 and, for all n ≥ 2, T (n) = T (n − 1) + T (n − 2) + 7.

1. Prove, for all integers n ≥ 1, that lg n < n.

Let P (n) be the above predicate, i.e. lg n < n. Exponentiating both sides of the inequality
with base 2, we see that P (n) is equivalent to Q(n) : n < 2n (since 2lg n = n). We can prove
Q(n) by induction.

Base case: Let n = 1. Then n = 1 < 2 = 21 = 2n, so Q(1).

Inductive case: Let t be any integer greater than 1. Assume Q(n) for all integers n in the set
{1, . . . , t − 1}. Under this assumption, we want to show Q(t) , i.e. that t < 2t.

But t = (t − 1) + 1, and 2t = 2 ∗ (2t−1), so we have

t = (t − 1) + 1 < 2t−1 + 1 since Q(t − 1) by the induction hypothesis, and

2t−1 + 1 < 2t−1 + 2t−1 = 2t, since 1 < 2t−1 (because t > 1), so

t = (t − 1) + 1 < 2t−1 + 1 < 2t, so t < 2t, i.e. Q(t).

So, by the principle of mathematical induction, Q(n) holds for all n ≥ 1.

2. Prove that 16n2 + 99n + 16n lg n is in Θ(n2).

Define q(n) = 16n2 + 99n + 16n lg n.

For n ≥ 1, 99n > 0 and 16n lg n ≥ 0, so q(n) > 16n2, so there exists a constant c (e.g. 16)
such that q(n) > cn2, so q(n) ∈ Ω(n2).

Also, for n ≥ 1, n ≤ n2, so 99n ≤ 99n2, and lg n < n ≤ n2 (by the previous question),
so q(n) < 16n2 + 99n2 + 16n2 = 131n2, so there exists a constant d (e.g. 131) such that
q(n) < dn2, so q(n) ∈ O(n2).

Finally, q(n) ∈ Ω(n2), and q(n) ∈ O(n2), so q(n) ∈ Θ(n2).

3. Prove, for all n ≥ 0, f(n) < αn.

Let P (n) be the above predicate, i.e. f(n) < αn. Prove the claim by induction on n.

Base cases. Left as an exercise.

Inductive case. Let k be any integer ≥ 2. Assume P (n) for all integers n in the set {1, . . . , k−
1}. We want to show that this implies P (k), i.e. that f(k) < αk.

Now, f(k) = f(k − 1) + f(k − 2) (by the definition of f(k), since k ≥ 3), and P (k − 1) and
P (k − 2) by the inductive assumption, i.e. f(k − 1) < αk−1 and f(k − 2) < αk−2, so we have
f(k) < αk−1 + αk−2. So we are done if we can show αk−1 + αk−2 ≤ αk, i.e. if

αk − αk−1 − αk−2 ≥ 0 . (*)



But αk−αk−1−αk−2 = αk−2(α2−α−1), and α2−α−1 = 0 (start with the definition of α, and
use arithmetic; alternatively, by the quadratic equation, y2 − y − 1 is zero if y = (1 +

√
5)/2,

i.e. if y = α), so (*) holds, so we have shown f(k) < αk. So P (k). So, by the principle of
mathematical induction, P (n) holds for all positive integers n.

4. The proof is similar to that of the previous question.

5. (i) Prove, for all integers n ≥ 0, T (n) = 11f(n + 1) − 7.

Argue by induction. Define P (n) as the above predicate. There are two bases to consider. I
leave these to you as an exercise.

Inductive case. Let x be a positive integer and assume P (n) for all n in {1, . . . , x − 1}. We
want to show P (x), i.e. that T (x) = 11f(x) − 7.

Now T (x) = T (x − 1) + T (x − 2) + 7 (why?), T (x − 1) = f(x) − 7 (why?), and T (x − 2) =
f(x − 1) − 7 (why?), and f(x) + f(x − 1) = f(x + 1) (why?), so

T (x) = T (x − 1) + T (x − 2) + 7

= f(x) − 7 + f(x − 1) − 7 + 7

= f(x) + f(x − 1) − 7

= f(x + 1) − 7

so P (x). So, by the principle of mathematical induction, P (n) for all positive integers n.

(ii) Prove that T (n) is in O(αn).

Use (i) and question 3.

(iii) Prove that T (n) is in Θ(αn).

Show T (n) is in Ω(αn): prove T (n) > f(n) by induction and use question 4. Now use (ii).


