Define α as the golden ratio, i.e. $(1 + \sqrt{5})/2$.

Define f(n) as the *n*th Fibonacci number:

f(0) = 0, f(1) = 1, and, for all integers $t \ge 2, f(t) = f(t-1) + f(t-2)$.

Define T(n) so that T(0) = T(1) = 4 and, for all $n \ge 2$, T(n) = T(n-1) + T(n-2) + 7.

1. Prove, for all integers $n \ge 1$, that $\lg n < n$.

Let P(n) be the above predicate, i.e. $\lg n < n$. Exponentiating both sides of the inequality with base 2, we see that P(n) is equivalent to $Q(n) : n < 2^n$ (since $2^{\lg n} = n$). We can prove Q(n) by induction.

Base case: Let n = 1. Then $n = 1 < 2 = 2^1 = 2^n$, so Q(1).

Inductive case: Let t be any integer greater than 1. Assume Q(n) for all integers n in the set $\{1, \ldots, t-1\}$. Under this assumption, we want to show Q(t), i.e. that $t < 2^t$. But t = (t-1) + 1, and $2^t = 2 * (2^{t-1})$, so we have

 $t = (t-1) + 1 < 2^{t-1} + 1$ since Q(t-1) by the induction hypothesis, and

 $2^{t-1} + 1 < 2^{t-1} + 2^{t-1} = 2^t$, since $1 < 2^{t-1}$ (because t > 1), so

 $t = (t-1) + 1 < 2^{t-1} + 1 < 2^t$, so $t < 2^t$, i.e. Q(t).

So, by the principle of mathematical induction, Q(n) holds for all $n \ge 1$.

2. Prove that $16n^2 + 99n + 16n \lg n$ is in $\Theta(n^2)$.

Define $q(n) = 16n^2 + 99n + 16n \lg n$.

For $n \ge 1$, 99n > 0 and $16n \lg n \ge 0$, so $q(n) > 16n^2$, so there exists a constant c (e.g. 16) such that $q(n) > cn^2$, so $q(n) \in \Omega(n^2)$.

Also, for $n \ge 1$, $n \le n^2$, so $99n \le 99n^2$, and $\lg n < n \le n^2$ (by the previous question), so $q(n) < 16n^2 + 99n^2 + 16n^2 = 131n^2$, so there exists a constant d (e.g. 131) such that $q(n) < dn^2$, so $q(n) \in O(n^2)$.

Finally, $q(n) \in \Omega(n^2)$, and $q(n) \in O(n^2)$, so $q(n) \in \Theta(n^2)$.

3. Prove, for all $n \ge 0$, $f(n) < \alpha^n$.

Let P(n) be the above predicate, i.e. $f(n) < \alpha^n$. Prove the claim by induction on n.

Base cases. Left as an exercise.

Inductive case. Let k be any integer ≥ 2 . Assume P(n) for all integers n in the set $\{1, \ldots, k-1\}$. We want to show that this implies P(k), i.e. that $f(k) < \alpha^k$.

Now, f(k) = f(k-1) + f(k-2) (by the definition of f(k), since $k \ge 3$), and P(k-1) and P(k-2) by the inductive assumption, i.e. $f(k-1) < \alpha^{k-1}$ and $f(k-2) < \alpha^{k-2}$, so we have $f(k) < \alpha^{k-1} + \alpha^{k-2}$. So we are done if we can show $\alpha^{k-1} + \alpha^{k-2} \le \alpha^k$, i.e. if

$$\alpha^k - \alpha^{k-1} - \alpha^{k-2} \ge 0. \tag{(*)}$$

But $\alpha^k - \alpha^{k-1} - \alpha^{k-2} = \alpha^{k-2}(\alpha^2 - \alpha - 1)$, and $\alpha^2 - \alpha - 1 = 0$ (start with the definition of α , and use arithmetic; alternatively, by the quadratic equation, $y^2 - y - 1$ is zero if $y = (1 + \sqrt{5})/2$, i.e. if $y = \alpha$), so (*) holds, so we have shown $f(k) < \alpha^k$. So P(k). So, by the principle of mathematical induction, P(n) holds for all positive integers n.

- 4. The proof is similar to that of the previous question.
- 5. (i) **Prove, for all integers** $n \ge 0$, T(n) = 11f(n+1) 7.

Argue by induction. Define P(n) as the above predicate. There are two bases to consider. I leave these to you as an exercise.

Inductive case. Let x be a positive integer and assume P(n) for all n in $\{1, \ldots, x-1\}$. We want to show P(x), i.e. that T(x) = 11f(x) - 7.

Now T(x) = T(x-1) + T(x-2) + 7 (why?), T(x-1) = f(x) - 7 (why?), and T(x-2) = f(x-1) - 7 (why?), and f(x) + f(x-1) = f(x+1) (why?), so

T(x) =	T(x-1) +	T(x-2) + 7
=	f(x) - 7 +	f(x-1) - 7 + 7
—	f(x) +	f(x-1) - 7
=	f(x+1) - 7	

so P(x). So, by the principle of mathematical induction, P(n) for all positive integers n.

- (ii) **Prove that** T(n) is in $O(\alpha^n)$. Use (i) and question 3.
- (iii) Prove that T(n) is in $\Theta(\alpha^n)$. Show T(n) is in $\Omega(\alpha^n)$: prove T(n) > f(n) by induction and use question 4. Now use (ii).