cmput 204 (lec a2/ea2)

2. def carmichael(n):

some asn 2 solutions

2013 fall

composite = False
for a in range(2,n):
if 1!=gcd(a,n):
composite = True
elif 1!=pow(a,n-1,n):
return False
return composite

. (i) easy to see by expansion (or use induction) (ii) upper bound: each term at most lgn.
lower bound: there are at least n/2 terms, each at least lg(n/2). (alternative solution:
use an integral bound)

. skipped

. as n doubles, runtime increases by a factor of about 4, suggesting runtime in ©(n?). this
makes sense if isprime(x) takes O(z) time. why? well, on average, how many possible
factors do you need to look at before deciding whether a number is prime? and are
the numbers we are using in this experiment small enough so that the time for modular
division takes constant time? to answer these questions, you should put a counter in your
program to answer the first question.

. def isp2(n):
if 2==n:
return True
if 0==nj2:
return False
j=3
while j*j <= n:
if O0==n%j:
return False # composite
j+=2
return True # prime

. (i) d divides a, so there exists an integer ¢ such that dt = a. similarly, there exists an
integer s such that ds = b. so ax + by = dtx + dsy = d(tx + sy), so d divides ax + by.
Prove or disprove: d divides ax + by. (ii) ax + by > 0, so neither d nor (tx + sy) are
0, so d = (ax + by)/(tx + sy). If d < 0 we are done. If d > 0, then so is tx + sy, and
(ax +by)/(tx+ sy) < (ax+by)/1 = ax + by0. (iii) it suffices to check that 7 divides both
8616909 and 135716.

. use extended euclid



