
cmput 204 assignment 2 solutions 2014

2. (i) All operations are mod 101. a = 71. The exponents we need are 37, 18, 9, 4, 2, 1.

a^1 = 71

a^2 = 71*71 = 92

a^4 = 92*92 = 81

a^9 = 81*81*a = 81*81*71 = 19

a^18 = 19*19 = 58

a^37 = 58*58*a = 58*58*71 = 80

(ii) Assume that multiplying a k-bit number times a t-bit number gives a (k + t)-bit number
(sometimes the sum has fewer bits). Assume that multiplying a k-bit number times a t-bit
number takes kt milliseconds. a = 1023, so has 10 bits. The exponents we need are 1023,
511, 255, 127, 63, 31, 15, 7, 3, 1.

a3: a*a (10*10 ms, product has 20 bits) *a (20*10 ms, 30 bits)

a7: a3*a3 (30*30 ms, 60 bits) * a (60*10 ms, 70 bits)

a15: a7*a7 (70*70 ms, 140 bits) * a (140*10 ms, 150 bits)

...

a1023: a511*a511 (5110*5110 ms, 10220 bits) * a (10220*10 ms, 10230 bits)

So the total time taken is 100((1∗ 1+ 3 ∗ 3 +7 ∗ 7+ . . . 511 ∗ 511)+2 ∗ (1+ 3+ 7+ . . . 511)) =
100(347489 + 2 ∗ 1013) = 34951500 milliseconds.

3. (i) 1 3 27

(ii) Each time we divide y by 2, we return x ∗ zzz(x, y/2) ∗ zzz(x, y/2). This will give us x to
the power of y if and only if y is odd. So, y must be odd every time we divide it by 2. It is
easy to show (e.g. by induction) that y must be exactly 1 less than a power of 2, where the
smallest power of 2 is 1 = 20. So, y = 0, 1, 3, 7, 15, 31, 63.

4. (i) There are two problems with isp( ). It gives the wrong answer if n = 2, or if n = p2

where p is an odd prime (e.g. n = 9). So first fix the algorithm: return prime if n is 2, and
change the while test to (d*d <= n).

Now (with the changes above), for all integers n ≥ 2, the algorithm is correct.

First, assume n is even. (I leave this case to you . . . ).

Next, assume n is odd. Notice that if n has a prime divisor, then it has a prime divisor k
such that k ∗ k ≤ n. (Suppose k ∗ k > n and k divides n. Then n = kj where j = n/k, and
j ∗ j = (n/k) ∗ (n/k) = (n ∗ n)/k ∗ k < n.) So it sufficies to check among all odd numbers
{3, 5, 7, ..., t} as divisors.



(ii) Best case: the input n is even, the algorithm returns immediately, runtime Θ(k).

Worst case: the input n is prime. So there are Θ(
√

n) iterations, each takes Θ((lg d)2) time,

where d ranges from 2 to root n. So the runtime is Θ(

√

n∑

d=2

(lg d)2 ) time.

In the sum, there are
√

n − 1 terms, the largest term is

(lg
√

n)2 = (lg n1/2)2 = ((1/2) lg n)2 ∈ O((lg n)2) ,

so the runtime is in O(
√

n(lg n)2). By using integration, or by considering the last half of the
terms in the sum, it is not hard to show that the sum is in Ω(

√
n(lg n)2). So the runtime is

in Θ(
√

n(lg n)2).

(iii) The randomized Fermat primality test doesn’t make sense when n = 2 or 3 (the only
possible values of a would report that a is prime), so I ran it on numbers from 4 to 999.

There are no errors when the input is prime, by Fermat’s little theorem. When the input is
composite, the average error rate of the single-trial Fermat test is about 13 out of the first
1000 primes, so should be 0 with the 10-trial test.

T = [1,10]

for t in T:

errP, errC = 0,0

for n in range(4,1000):

if isp(n)!=probp(n,t):

if isp(n): errP += 1

else: errC += 1

print "errors: prime", errP, "composite", errC

(i) d divides a, so there exists an integer k such that a = kd. Similarly, there exists an integer
h such that b = hd. Now ax+ by = kdx+hdy = (kx+hy)d and — since k, x, h, y are integers
— kx + hy is an integer, say c. So there exists an integer c such that ax + by = cd. So d
divides ax + by.

(ii) By (i), there is an integer c such that ax + by = cd. Also, ax + by > 0, so neither c nor d
are zero, so d = (ax + by)/c < ax + by.

(iii) Let g = gcd(a, b). Every common divisor of a and b divides every linear combination of a
and b. And, from the given formula, 51 is a linear combination of a and b, so g — a common
divisor of a and b — divides 51. So g ≤ 51.

Also, a = 51 ∗ 326921797 and b = 51 ∗ 317907761. So 51 is a common divisor of a and b. So
51 ≤ the greatest common divisor of a and b, which is g. So 51 ≤ g.

So, 51 = g.

(iv) a = 35267 = 7 ∗ 5038 + 1, so 7 does not divide a. So 7 cannot be the gcd of a and b.


