
cmput 204 assignment 1 solutions 2014

2. Find positive constants c0 and c1 such that, for all positive integers n,

c0n
3 < 27n3 + 13n2 + 873(lg n)3 < c1n

3. Justify briefly.

For c0, divide the inequality by n3, 27+13/n+873(lgn)3/n3 > c0, when n → ∞, 27+13/n+
873(lg n)3/n3 → 27. So, c0 ∈ (0, 27].
For c1, 27n3 + 13n2 + 873(lg n)3 < 27n3 + 13n3 + 873n3 < (27 + 13 + 873)n3 = 913n3. So,
c1 ∈ [913,∞).

3. Define α = (1 +
√

5)/2. Define f(0) = 0, f(1) = 1, and f(n) = f(n − 1) + f(n − 2) for all
n ≥ 2. Define T (0) = T (1) = 4 and T (n) = T (n − 1) + T (n − 2) + 7 for all n ≥ 2.

(i) Prove, for all integers n ≥ 3, f(n) > αn−2.

Let P(n) be the above predicate, i.e. f(n) > αn−2.Prove the claim by induction on n Base case.
Letn = 3. Then f(3) = f(2)+f(1) = f(1)+f(0)+f(1) = 2 = (1+

√
9)/2 > (1+

√
5)/2 = αn−2.

So P(3).
Inductive case. Let k be any integer ≥ 3. Assume P(n) for all integers n in the set
{1, 2, 3, ..., k − 1}. Then, we want to show P(k), i.e. f(k) > αk−2.
Now, f(k) = f(k-1) + f(k-2) (by the definition of f(k), since k ≥ 3), and P(k-1) and P(k-2)
by the inductive assumption, i.e. f(k − 1) > αk−3 and f(k − 2) > αk−4, so we are done if
αk−3 + αk−4 ≥ αk−2.
Since α + 1 = (3 +

√
5)/2 = α2, αk−3 + αk−4 = αk−4(α + 1) = αk−4α2 = αk−2, it follows

that f(k) > αk−2, so P(k). So, by the principal of mathematical induction, P(n) holds for all
integers n ≥ 3.

(ii) Prove, for all integers n ≥ 1, T (n) < 18f(n). Hint. use some results from the seminar
(see version revised today).

Let Q(n) be the above predicate, i.e. T (n) < 18f(n).
T (1) = 4 < 18f(1) = 18. So Q(1).
T (2) = T (1) + T (0) + 7 = 11 < 18f(2) = 18(f(1) + f(0)) = 18. So Q(2).
Now, T (n) = 11f(n + 1) − 7 (from the seminar, since n ≥ 3), and f(n) < αn (from the
seminar, since n ≥ 0).
So, for n ≥ 3, T (k) = 11f(k + 1) − 7 < 11αk+1 − 7 = (11 + 11

√
5)αk/2 − 7 < 18αk. So Q(k),

sincek ≥ 3. So T (n) = 11f(n + 1) − 7 holds for all integers n ≥ 1.

4. (i) Show the output from the call ff(4).

L = [1, 6, 7, 13, 20], so the value returned is 20.

def ff(n):

L = [1, 6]

for j in range(2,n+1): # j ranges from 2 to n

L.append( L[j-2]+L[j-1] )

# (*) invariant: j is the index of the last element of L

print L[n]

(ii) Finish the proof of the claim.

Claim: each time execution reaches (*), the invariant holds.

Proof. By induction on the variable j.



Base case. In Python, list indices start at 0, so the first time execution reaches the for loop,
L has its initial 2 elements, so the first time execution reaches line (*), L has had exactly 1
element appended (its value is 1+6=7), so L has exactly 3 elements, so the index of the last
element is 2. Also, the first time execution reaches (*), j is 2. So the invariant holds when j

is 2.

Inductive case. Let t be any integer ≥ 2. Assume that the invariant holds when execution
reaches line (*) and j=t. We want to show that that the invariant then holds when execution
reaches line (*) and j=t+1.

So, assume execution reaches line (*) with j=t+1. Now since we assume that the invariant
holds when execution reaches line (*) and j=t, then before the iteration starts with j = t+1,
t is the last index of L, which means the length of L is t + 1. When the execution reaches line
(*) with j=t+1, L has another element appended (its value is L[t-1]+L[t]). Then the length
of L by now should be t + 2, which means the last index of L would be t + 1. So the invariant
holds when j = t + 1.

5. (i) Trace the execution of the algorithm below with input x=29 and y=11.

(ii) Give the runtime as a function of k, assuming x and y each have k bits.

def mr(x,y): #

if (x==0):

return 0

z = mr(x/2,y)

if (1==x%2):

return z + z + y

return z + z

Solution:
(i) We trace the execution of the algorithm as follows:
mr(29,11): x6=0 ⇒ z=mr(14,11)
mr(14,11): x6=0 ⇒ z=mr(7,11)
mr(7,11): x6=0 ⇒ z=mr(3,11)
mr(3,11): x6=0 ⇒ z=mr(1,11)
mr(1,11): x6=0 ⇒ z=mr(0,11)
mr(0,11): x=0 ⇒ Returned value = 0
mr(1,11): z=0 and x%2=1 ⇒ returned value = 0+0+11 = 11
mr(3,11): z=11 and x%2=1 ⇒ returned value =11+11+11 = 33
mr(7,11): z=33 and x%2=1 ⇒ returned value =33+33+11 = 77
mr(14,11): z=77 and x%2=0 ⇒ returned value =77+77 = 154
mr(29,11): z=154 and x%2=1 ⇒ returned value =154+154+11 = 319

(ii) With each recursive call, the number of bits of x is reduced by exactly 1, so the total
number of recursive calls is in Θ(k). Within one call, there are a constant number of oper-
ations, including if-check, comparison with 0, return, integer division by 2 (and remainder),
and addition. Each of these operations takes O(k) time, and division by 2 with remainder
takes Θ(k) time, so the time for each recursive call (except possible the last) takes Θ(k) time.
So the runtime is in Θ(k2).


