Learning Bayesian Nets
Parameters from Partial Data

KF, Chapter 18-18.2

Some material taken from C Guesterin (CMU)
Space of Topics

Learning...
- Parameter, Structure
- Data: Complete, Missing
- Framework: Frequentist, Bayesian
Learning Belief Net Parameters from Partial Data

- Framework
 - Why is the data missing? ... MCAR, MAR, ...
 - Why more challenging?

- Approaches
 - Gradient Ascent
 - EM
 - Gibbs
Learning from Missing data

- To find good Θ, need to compute $P(\Theta, S \mid \mathcal{G})$
- Easy if ..

$$S = \begin{cases} \ c_1 : \begin{pmatrix} \end{pmatrix} \cdots \begin{pmatrix} \end{pmatrix} & \text{incomplete} \\ \ c_2 : \begin{pmatrix} \end{pmatrix} \cdots \begin{pmatrix} \end{pmatrix} & \text{complete} \\ \vdots & \vdots \\ \ c_m : \begin{pmatrix} \end{pmatrix} \cdots \begin{pmatrix} \end{pmatrix} & \end{cases}$$

- What if S is incomplete
 - Some $c_{ij} = *$
 - “Hidden variables” (X_k never seen: $c_{ik} = * \ \forall \ i$)

- Here:
 - Given fixed structure
 - Missing (Completely) At Random:
 Omission not correlated with value, etc.

- Approaches:
 - Gradient Ascent, EM, Gibbs sampling, ..
Why is the data missing?

- Estimating $P(\text{Heads}) = \theta$
 - Earlier: data = [H, T, H, H, ..., T]
 - Now: data = [H, T, ?, ?, H, ..., T]
- Thumbtack falls off table, ...not recorded
 - No information in "?"

VS

- Recorder doesn’t like "Tails", and so omits those values
 - Here, "?" means "Tails" – lots of info!
Formal Model

- \(\mathbf{X} = \{X_1, X_2, \ldots, X_n\} \) : set of r.v.s
- \(\mathbf{O}_\mathbf{X} = \{O_1, O_2, \ldots, O_n\} \) : corresponding set of observability variables
- \(P_{\text{miss}}(\mathbf{X}, \mathbf{O}_\mathbf{X}) = P(\mathbf{X}) \cdot P_{\text{miss}}(\mathbf{O}_\mathbf{X} | \mathbf{X}) \)
- \(P(\mathbf{X}) \) parameterized by \(\theta \)
- \(P_{\text{miss}}(\mathbf{O}_\mathbf{X} | \mathbf{X}) \) parameterized by \(\psi \)
- \(\mathbf{Y} = \{Y_1, Y_2, \ldots, Y_n\} \quad \text{Val}(Y_i) = \text{Val}(X_i) \cup \{?\} \)
 \[
 Y_i = \begin{cases}
 X_i & \text{if } +o_i \\
 ? & \text{if } -o_i
 \end{cases}
 \]
Uncorrelated Missingness

Here, \(\mathbf{X} \perp \mathbf{O}_X \); \(\theta \perp \psi \mid D \)

- \(P(Y= H) = \theta \psi \)
- \(P(Y= T) = (1 - \theta) \psi \)
- \(P(Y= ?) = 1 - \psi \)

Assuming \(D \) contains \(\#[H], \#[T], \#[?] \)

- \(L[\theta, \psi : D] = \theta^{\#[H]} (1 - \theta)^{\#[T]} \psi^{\#[H]+\#[T]} (1 - \psi)^{\#[?]} \)
- \(\theta^{(\text{MLE})} = \frac{\#[H]}{\#[H] + \#[T]} \)
- \(\psi^{(\text{MLE})} = \frac{\#[H] + \#[T]}{\#[H] + \#[T] + \#[?]}. \)

Simple frequencies!!
Correlated Missingness

Here, \(\neg \left[\theta \perp \psi \mid D \right] \)
- \(\psi_{Ox|H} = \text{prob of seeing output, if heads} \)
 \(= P(Y=H \mid X=H) \)
- \(\psi_{Ox|T} = P(Y=T \mid X=T) \)

- \(P(Y=H) = \theta \psi_{Ox|H} \)
- \(P(Y=T) = (1 - \theta) \psi_{Ox|T} \)
- \(P(Y=?) = \theta (1 - \psi_{Ox|H}) + (1 - \theta) (1 - \psi_{Ox|T}) \)

Assuming \(D \) contains \#[H], \#[T], \#[?]
- \(L[\theta, \psi : D] = \theta \#[H] (1 - \theta) \#[T] \psi_{Ox|H} \#[H] \psi_{Ox|T} \#[T] \)
 \(\theta (1 - \psi_{Ox|H}) + (1 - \theta) (1 - \psi_{Ox|T}) \#[?] \)

What a mess! Does not factor, so no easy MLE values...
A missing data model P_{missing} is \textit{missing completely at random (MCAR)} if

$$P \models X \perp O_X$$

- Plausible ...
 - Coffee spills on paper
 - Flecks of dusts in images
- Here, can solve separately for
 - θ (for $P(X)$)
 - ψ (for $P_{\text{miss}}(O_X | X)$)
MCAR is ... too strong!

- Not MCAR:
 - test results are missing if not ordered... perhaps as patient too sick or too healthy
 - \(\Rightarrow \) Missingness-of-test is correlated with test-outcome

- MCAR is sufficient for decomposition of likelihood...
 - but NOT necessary

- Just need

Observation mechanism is CONDITIONALLY INDEPENDENT of variables, GIVEN OTHER OBSERVATIONS
Weaker Condition

- Flip coin \(X_1, X_2 \)
- If \(X_1 = \text{Heads} \), reveal outcome of \(X_2 \)

- Here, \(P \models O_{X_2} \perp X_2 \mid X_1 \)
 - Outcomes of both coins INDEPENDENT of whether hidden, given observations

- Use \(\theta_{X_1} \theta_{X_2} \psi_{O_{X_2}|H} \psi_{O_{X_2}|T} \) (where \(\theta_{X_1} \perp \theta_{X_2} \))

\[
L(\theta : \mathcal{D}) = \theta_{X_1}^{M[Y_1=\text{Heads}]}(1 - \theta_{X_1})^{M[Y_1=\text{Tails}]} \\
\theta_{X_2}^{M[Y_2=\text{Heads}]}(1 - \theta_{X_2})^{M[Y_2=\text{Tails}]} \\
\psi_{O_{X_2}|H}^{M[Y_1=\text{Heads}, Y_2=\text{Heads}]+M[Y_1=\text{Heads}, Y_2=\text{Tails}]}(1 - \psi_{O_{X_2}|H})^{M[Y_1=\text{Heads}, Y_2=\text{?}]} \\
\psi_{O_{X_2}|Tails}^{M[Y_1=\text{Tails}, Y_2=\text{Heads}]+M[Y_1=\text{Tails}, Y_2=\text{Tails}]}(1 - \psi_{O_{X_2}|\text{Tails}})^{M[Y_1=\text{Tails}, Y_2=\text{?}]} \\
\]

- Four factors, each w/ just 1 parameter
 \(\Rightarrow \) can solve independently!
Missing At Random

- Given tuple of observations y, partition variables X into
 - observed $X^y_{\text{obs}} = \{ X_i \mid y_i \neq ? \}$
 - hidden $X^y_{\text{hid}} = \{ X_i \mid y_i = ? \}$
- Missing data model P_{miss} is \textit{missing at random (MAR)} if
 \[\forall y \text{ w/ } P_{\text{miss}}(y) > 0 \text{ and } \forall x^y_{\text{hid}} \in \text{Val}(x^y_{\text{hid}}) \]
 \[P_{\text{miss}} \models O_X \perp x^y_{\text{hid}} \mid x^y_{\text{obs}} \]

\[P_{\text{miss}}(x^y_{\text{hid}} \mid x^y_{\text{obs}}, O_X) = P_{\text{miss}}(x^y_{\text{hid}} \mid x^y_{\text{obs}}) \]
Meaning of MAR...

MAR \Rightarrow

$P_{\text{miss}}(x_{\text{hid}}^y \mid x_{\text{obs}}^y, o_X) = P_{\text{miss}}(x_{\text{hid}}^y \mid x_{\text{obs}}^y)$

\Rightarrow

$P_{\text{miss}}(y) = P_{\text{miss}}(o_X \mid x_{\text{obs}}^y) P(x_{\text{obs}}^y)$

- Depends on ψ
- Depends on θ

If P_{miss} is MAR, then

$L(\theta, \psi; D) = L(\theta; D) L(\psi; D)$

MAR \Rightarrow

Can ignore observation model when learning model parameters!
Comments on MAR...

- There are many MAR situations but ...
- **BP_Sensor** measures blood pressure
 - BP_Sensor can fail if patient is overweight
 - Obesity is relevant to blood pressure
 - So... “non-observation” is informative – not MAR
 - (But if we know Weight & Height, then $O_B \perp B \mid \{W,H\}$)
- Probably no X-ray X if no broken bones,
 - So $\neg (O_x \perp X)$, not MAR
 - But if “primary complaint” C known, $O_x \perp X \mid C$... MAR!

- We will assume MAR from now on...
Bayesian Learning for 2-node BN

- Every path between $\theta_X - \theta_{Y|X}$ is:
 - $\theta_X \rightarrow X[m] \rightarrow Y[m] \leftarrow \theta_{Y|X}$
 - Partial
- Complete data
 - \Rightarrow values for $D = \{X[1], \ldots, X[M], Y[1], \ldots, Y[M]\}$
 - \Rightarrow path is NOT active

$\Rightarrow \theta_X \perp \theta_{Y|X} \perp D$
Example ...

- Complete data:
- Likelihood:
 - $\theta_x^{29}(1 - \theta_x)^{14} \theta_{y|x=+}^{10} \theta_{y|x=0}^{4} \theta_{y|x=-1}^{13}(1 - \theta_{y|x=-1})^{16}$
 - Easy to solve
- What if don’t know $X[1]$
 - (Assume $Y[1]=+$)
 - Likelihood:
 - $\theta_x^{29}(1 - \theta_x)^{13} \theta_{y|x=+}^{10} \theta_{y|x=0}^{4} \theta_{y|x=-1}^{12} [\theta_x \theta_{y|x=+} + (1- \theta_x) \theta_{y|x=-1}]$
 - Not as nice...
- If k missing values, $L(...; D)$ could have many terms...
Geometric Visualization

- Complete data: *unimodal*
- Incomplete data:
 ... sum of unimodals...
 which is *multimodal*!
Problems with Hidden Variables

- Observe X, Y... but not H
 - $P(+x, -y) = \sum_h P(h) P(+x|h) P(-y|h)$
- Likelihood

 \[
 L(\theta : D) = \prod_{x,y} \left[\sum_h P(h) P(x|h) P(y|h) \right]^{\#(x,y)}
 \]

- Cannot decouple estimate of $P(x|h)$ from $P(y|h)$
Problems with Partial Data

- In general, likelihood over iid data:
 \[L(\theta : D) = \prod_m (\sum_{h[m]} P(o[m], h[m] | \theta) \]

- Involves *evaluating likelihood function* ... can be arbitrary BN inference \(\Rightarrow \) INTRACTABLE!

- More bad news: Likelihood function is...
 - *not* unimodal
 - does *not* have closed form representation
 - is *not* decomposable as product of likelihoods for diff parameters
Learning Belief Net Parameters from Partial Data

- Framework
 - Why is the data missing? ... MCAR, MAR, ...
 - Why more challenging?

- Approaches
 - Gradient Descent
 - EM
 - Gibbs
Gradient Ascent

- Want to maximize likelihood
 - $\theta^{(\text{MLE})} = \arg\max_{\theta} L(\theta : D)$

- Unfortunately...
 - $L(\theta : D)$ is nasty, non-linear, multimodal fn

- So...
 - Gradient-Ascent
 - ... 1st-order Taylor series

\[f_{\text{obj}}(\theta^{-}) \approx f_{\text{obj}}(\theta^{0}) + (\theta - \theta^{0})^{T} \nabla f_{\text{obj}}(\theta^{0}) \]

Need derivative!
Gradient Ascent [APN]

View: \(P_\Theta(S) = P(S | \Theta, G) \) as fn of \(\Theta \)

\[
\frac{\partial \ln P_\Theta(S)}{\partial \theta_{ijk}} = \sum_{\ell=1}^{m} \frac{\partial \ln P_\Theta(c_\ell)}{\partial \theta_{ijk}} = \sum_{\ell=1}^{m} \frac{\partial P_\Theta(c_\ell)/\partial \theta_{ijk}}{P_\Theta(c_\ell)}
\]

\[
\frac{\partial P_\Theta(c_\ell)/\partial \theta_{ijk}}{P_\Theta(c_\ell)} = \frac{P_\Theta(c_\ell | v_{ik}, p_{aij}) P_\Theta(p_{aij})}{P_\Theta(c_\ell)} = \frac{P_\Theta(v_{ik}, p_{aij} | c_\ell)}{\theta_{ijk}}
\]

Alg: fn Basic-APN(BN = \(\langle G, \Theta \rangle, S \)): (modified) CPTables
- inputs: BN, a Belief net with CPT entries
 D, a set of data cases
- repeat until \(\Delta \Theta \approx 0 \)
 \(\Delta \Theta \leftarrow 0 \)
 for each \(c_r \in S \)
 - Set evidence in BN to \(c_r \)
 - For each \(X_i \) w/ value \(v_{ik} \), parents w/ \(j^{th} \) value \(p_{aij} \)
 \(\Delta \Theta_{ijk} += P(v_{ik}, p_{aij} | c_r) / \theta_{ijk} \)
 - \(\Theta += \alpha \Delta \Theta \)
 - \(\Theta \leftarrow \text{project } \Theta \text{ onto constraint region} \)
- return(\(\Theta \))

Note: Computed \(P(v_{ik}, p_{aij} | c_r) \) to deal with \(c_r \)
\(\Rightarrow \) can “piggyback” computation
Issues with Gradient Ascent

- Lots of Tricks for efficient ascent
 - Line Search
 - Conjugate Gradient
 - ...
 - Take Cmput551, or optimization

- Constraints
 - $\Theta_{ijk} \in [0, 1]$
 - $\sum_r \Theta_{ijr} = 1$
 - But ... $\Theta_{ijk} + = \alpha \Delta \Theta_{ijk}$ could violate
 - Use $\Theta_{ijk} = \exp(\lambda_{ijk}) / \sum_r \exp(\lambda_{ijr})$
 - Find best λ_{ijk} ... unconstrained ...
Expectation Maximization (EM)

- EM is designed to find most likely θ, given incomplete data!
- Recall simple Maximization needs counts:
 $\#(+x, +y)$, ...
- But is instance $[?, +y]$ in
 ... $\#(+x, +y)$? ... $\#(-x, +y)$?
- Why not put it in BOTH... fractionally?
 - What is weight of $\#(+x, +y)$?
 - $P_\theta(+x \mid +y)$, based on current value of θ
EM Approach – E Step

Sample $S = \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}$

Set $S^{(0)} = \begin{pmatrix}
0 & 0 & 1 & 1.0 \\
0 & 1 & 0 & 0.7 \\
1 & 0 & 0 & 0.3 \\
0 & 0 & 1 & 0.1 \\
0 & 1 & 1 & 0.9 \\
0 & 0 & 1 & 0.7 \times 0.1 \\
0 & 1 & 1 & 0.7 \times 0.9 \\
1 & 0 & 1 & 0.3 \times 0.1 \\
1 & 1 & 1 & 0.3 \times 0.9
\end{pmatrix}$
EM Approach – M Step

- Use fractional data:

\[S^{(0)} = \]

- New estimates:

\[\hat{\theta}_{+c}^{(1)} = \frac{\#(a_+c)}{\#(c)} = \frac{1.0 + (1.0) + (1.0)}{4} = 0.75 \]

\[\hat{\theta}_{+a|+c}^{(1)} = \frac{(0.3 \times 0.1) + (0.3 \times 0.9)}{1 + 0.1 + 0.9 + (0.7 \times 0.1) + (0.7 \times 0.9) + (0.3 \times 0.1) + (0.3 \times 0.9)} = 0.1 \]

\[\hat{\theta}_{+b|+c}^{(1)} = \frac{(0.3 \times 0.1) + (0.3 \times 0.9)}{0.1 + (0.7 \times 0.9) + (0.3 \times 0.9)} = 0.33 \]
EM Approach – M Step

• Use fractional data:

\[S^{(0)} = \]

\[\begin{array}{ccc}
A & B & C \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array} \]

• New estimates:

\[\hat{\theta}_{+c}^{(1)} = \frac{\#(+c)}{\#(\{\})} = \frac{(0.3\times0.1)+(0.3\times0.9)}{1+0.1+0.9+(0.7\times0.1)+(0.7\times0.9)+(0.3\times0.1)+(0.3\times0.9)} = 0.1 \]

\[\hat{\theta}_{+a|+c}^{(1)} = \frac{\#(+a,+c)}{\#(+c)} = \frac{(a\times c)}{1+0.1+0.9+(0.7\times0.1)+(0.7\times0.9)+(0.3\times0.1)+(0.3\times0.9)} = \]

Then

- E-step: re-estimate distributions over the missing values based on these new \(\theta^{(1)} \) values
- M-step: compute new \(\theta^{(2)} \) values, using statistics based on these new distribution
EM Steps

E step:
- Given parameters θ,
- find probability of each missing value
 - ... so get $E[N_{ijk}]$

M step:
- Given completed (fractional) data
 - based on $E[N_{ijk}]$
- find max-likely parameters θ
EM Approach

- Assign $\Theta^{(0)} = \{\theta_{ijk}^{(0)}\}$ randomly.

- Iteratively, $k = 0, \ldots$

 E step: Compute EXPECTED value of N_{ijk}, given $\langle G, \Theta^k \rangle$

 $$\tilde{N}_{ijk} = E_{P(x|S, G)}(N_{ijk}) = \sum_{\alpha_i \in S} P(x_i^k, p_i^j | c_\ell, \Theta^k, S)$$

 M step: Update values of Θ^{k+1}, based on \tilde{N}_{ijk}

 $$\theta_{ijk}^{k+1} = \frac{\tilde{N}_{ijk} + 0}{\sum_{k=1}^n (\tilde{N}_{ijk} + 0)}$$

 ... until $\|\Theta^{k+1} - \Theta^k\| \approx 0$.

- Return Θ^k

1. This is ML computation; MAP is similar

 "Q" \rightarrow α_{ijk}

2. Finds local optimum

3. Used for HMM

4. Views each tuple with k "s"s as $O(2^k)$ partial-tuples
Facts about EM ...

- Always converges
- Always improve likelihood
 - \[L(\theta^{(t+1)} : D) > L(\theta^{(t)} : D) \]
 - ... except at stationary points...

- For CPtable for Belief net:
 - Need to perform general BN inference
 - Use Click-tree or ClusterGraph
 - ... just needs one pass
 - (as \(N_{ijk} \) depends on node+parents)
Gibbs Sampling

- Let $S^{(0)}$ be COMPLETED version of S, randomly filling-in each missing c_{ij}

 Let $d_{ij}^{(0)} = c_{ij}$

 If $c_{ij} = \ast$, then $d_{ij}^{(0)} = \text{Random}[\text{Domain}(X_i)]$

- For $k = 0..$

 - Compute $\Theta^{(k)}$ from $S^{(k)}$ [frequencies]

 - Form $S^{(k+1)}$ by...
 * $d_{ij}^{k+1} = c_{ij}$
 * If $c_{ij} = \ast$ then

 Let d_{ij}^{k+1} be random value for X_i,
 based on current distr Θ^k over $Z - X_i$

- Return average of these $\Theta^{(k)}$s

Note: As $\Theta^{(k)}$ based on COMPLETE DATA $S^{(k)}$

$\Rightarrow \Theta^{(k)}$ can be computed efficiently!

“Multiple Imputation”
Gibbs Sampling – Example

Guess initial values θ^0

<table>
<thead>
<tr>
<th></th>
<th>0.8</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0.9</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

A	B	C
\(\theta_{+a|+c}\) | \(\theta_{-a|+c}\) | \(\theta_{+b|+c}\) | \(\theta_{-b|+c}\)
\(\theta_{+a|-c}\) | \(\theta_{-a|-c}\) | \(\theta_{+b|-c}\) | \(\theta_{-b|-c}\)

\[S^{(1)} = \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

New

- Flip 0.3-coin:
- Flip 0.9-coin:
- Flip 0.8-coin:
- Flip 0.9-coin:

Then
- Use $S^{(1)}$ to get new $\theta^{(2)}$ parameters
- Form new $S^{(2)}$ by drawing new values from $\theta^{(2)}$
Gibbs Sampling (con't)

- Algorithm: Repeat
 - Given COMPLETE data $S^{(i)}$, compute new ML values for $\{\theta^{(i+1)}_{ijk}\}$
 - Using NEW parameters, impute (new) missing values $S^{(i+1)}$

- Q: What to return?
 AVERAGE over separated $\Theta^{(i)}$'s
 - eg, $\Theta^{(500)}$, $\Theta^{(600)}$, $\Theta^{(700)}$, ...

- Q: When to stop?
 When distribution over $\Theta^{(i)}$s have converged

- Comparison: Gibbs vs EM
 - + EM "splits" each instance
 ...into 2^k parts if k "s
 - – EM knows when it is done, and what to return
General Issues

- All alg’s are heuristic...
- Starting values θ
- Stopping criteria
- Escaping local maxima

- So far, trying to optimize likelihood. Could try to optimize APPROXIMATION to likelihood...
Gaussian Approximation

(Assumes large amounts of data)

- Let $g(\Theta) = \log [P(S|\Theta, G) P(\Theta|G)]$
 Let $\hat{\Theta}_{BN} = \arg\max_{\Theta} g(\Theta)$
 ...also maximizes $P(\Theta|G, S)$.

 With many samples,
 $\hat{\Theta}_{BN} \approx \arg\max_{\Theta}\{P(S|\Theta, G)\}$

- $g(\Theta) \approx g(\hat{\Theta}_{BN}) - \frac{1}{2}(\Theta - \hat{\Theta}_{BN}) A(\Theta - \hat{\Theta}_{BN})^t$
 (2nd-order Taylor; A is neg. Hessian of $g(\hat{\Theta}_{BN})$)

 So...
 $P(\Theta|G, S) \propto P(S|\Theta, G) P(\Theta|G)$
 $\approx P(S|\hat{\Theta}_{BN}, G) P(\hat{\Theta}_{BN}|G) e^{((\Theta - \hat{\Theta}_{BN}) A(\Theta - \hat{\Theta}_{BN})^t)}$

 ...which looks (approximately) Gaussian!

- Now use
 \underline{gradient descent or EM}

Note: Can often use values computed during inference!
Summary

- Missingness: MCAR vs MAR
- Approaches
 - Gradient Ascent
 - EM
 - Gibbs sampling
 - Multiple imputation

Note covered: Bayesian methods
 - MCMC, Variational, Particles, ...