III. Model-Free Learning

• $TD(\lambda)$ used for

 Value Determination

 Given $\pi_t(s)$, compute $U_t(s)$
 within PolicyIteration

• Next step of PolicyIteration:

 Given $U_t(s)$, compute $\pi_{t+1}(s)$

 \[
 \pi_{t+1}(s) = \arg\max_a \sum_{s'} P(s' | s, a) U_t(s')
 \]

 \[\Rightarrow \text{Need model: } P(s' | s, a)\]

• Ok for Backgammon

 What about Factory??
Curse of Modeling

• So far: “Known” environment . . .

Agent knows
\[M_{i,j}^a : \text{Dist over } S \times A \times S \]
\[P(s'|s,a) \]
\[R : S \times A \times S \to \mathbb{R} \]
\[R(s_t,a_t,s_{t+1}) = v \]

• Typically, \(M_{i,j}^a, R(\cdots) \) unknown!

 . . . so agent can’t choose actions . . .

Option #1: First estimate \(\hat{M}(\cdots), \hat{R}(\cdots) . . . \)
then find best policy, based on \(\hat{M}, \hat{R} \)

Option #2: . . .
Define $Q_\pi(s, a) \equiv$ cumulative reward of
performing a in s
then following π from then on

$$Q(s, a) \equiv R(s) + \sum_{s'} P(s' | s, a) \max_{a'} Q(s', a')$$

• If we knew $Q(\cdot, \cdot)$,
can choose optimal action $\pi(s)$
even without knowing $P(s' | s, a)$!

$$\pi_Q(s) = \arg\max_a \{ Q(s, a) \}$$

⇒ Just need to learn this
$Q(\cdot, \cdot)$ evaluation function

• Need to know set of actions $\{a\}$ for each state s
but NOT where each action goes (M_{ij}^a)
Difference between U and Q

\[U(s) = R(s) + \max_a \sum_{s'} M_{s,s'}^a U(s') \]

\[Q(s, a_1) = R(s) + \sum_{s'} M_{s,s'}^{a_1} \max_{a'} Q(s', a') \]
Example: Simple Deterministic World

\[R(s, a) \] (immediate reward values)

\[Q(s, a) \text{ values } (\gamma = 0.9) \quad U^*(s) \text{ values} \]

An optimal policy
Training Rule to Learn Q

- $Q\pi$ and $U\pi$ closely related:

$$U\pi(s) = \max_{a'} \{ Q\pi(s, a') \}$$

- Consider deterministic case:

$s' = \delta(s, a)$ is state resulting from applying action a in state s

$$\Rightarrow Q(s_t, a_t) = R(s_t) + \gamma U(\delta(s_t, a_t))$$

$$= R(s_t) + \gamma \max_{a'} \{ Q(s_{t+1}, a') \}$$

Let: $\hat{Q} \equiv$ approx to Q

- Training rule: (Bellman backup-ish)

$$\hat{Q}(s, a) \leftarrow R(s) + \gamma \max_{a'} \{ \hat{Q}(s', a') \}$$
\textbf{Q-Learning for Deterministic Worlds}

For each s, a

initialize table entry $\hat{Q}(s, a) \leftarrow 0$

Observe current state s

Do forever:

- Select an action a and execute it
- Receive immediate reward $r = R(s)$
- Observe new state $s' = \delta(s, a)$
- Update table entry for $\hat{Q}(s, a)$:
 \[\hat{Q}(s, a) \leftarrow r + \gamma \max_{a'} \{ \hat{Q}(s', a') \} \]
- $s \leftarrow s'$
Updating \hat{Q}

Initial state: s_I

Next state: s_2

$$\hat{Q}(s_1, a_r) \leftarrow R(s_1) + \gamma \max_{a'} \hat{Q}(\delta(s_1, a_r), a')$$

$$= 0 + 0.9 \max\{63, 81, 100\}$$

$$= 90$$

Thrm: If rewards ≥ 0, then

$$(\forall s, a, n) \quad \hat{Q}_{n+1}(s, a) \geq \hat{Q}_n(s, a)$$

and

$$(\forall s, a, n) \quad 0 \leq \hat{Q}_n(s, a) \leq Q(s, a)$$
\(\hat{Q} \) converges to \(Q \) ...

... if \(\circ \) deterministic world
\(\circ \) visit each \(\langle s, a \rangle \) infinitely often

Proof: Let “full interval” \(\equiv \) interval during which each \(\langle s, a \rangle \) is visited.

Let \(\hat{Q}_n \equiv \) table after \(n \) updates;
\(\Delta_n \equiv \) maximum error in \(\hat{Q}_n \)
\[\Delta_n = \max_{s,a} \{ |\hat{Q}_n(s, a) - Q(s, a)| \} \]

Claim: After each full interval,
\[\Delta_{n+fi} \leq \gamma \Delta_n \]
(largest error in \(\hat{Q} \) is reduced by \(\gamma \))

- Error in revised estimate \(\hat{Q}_{n+1}(s, a) \)
 (after updating \(Q_n(s, a) \), on iteration \(n + 1 \))
\begin{align*}
|\hat{Q}_{n+1}(s, a) - Q(s, a)| &= |(R(s) + \gamma \max_{a'} \hat{Q}_n(s', a')) - (R(s) + \gamma \max_{a'} Q(s', a'))| \\
&= \gamma |\max_{a'} \hat{Q}_n(s', a') - \max_{a'} Q(s', a')| \\
&\leq \gamma \max_{a'} |\hat{Q}_n(s', a') - Q(s', a')| \\
&\leq \gamma \max_{s''} \max_{a'} |\hat{Q}_n(s'', a') - Q(s'', a')| \\
&\leq \gamma \Delta_n
\end{align*}

Uses: \[\max_a f_1(a) - \max_a f_2(a) \leq \max_a |f_1(a) - f_2(a)| \]
Nondeterministic Case
TD-style Learning

So far: \(\{ \text{Reward, Next state} \} \) are deterministic

What if non-deterministic?

- Redefine \(U, Q \) by taking expected values
 \[
 U^\pi(s) \equiv E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \ldots]
 \equiv E[\sum_{i=0}^{\infty} \gamma^i r_{t+i}]
 \]
 \[
 Q(s, a) \equiv E[R(s) + \gamma U^*(\delta(s, a))]
 \]

- New training rule:
 (Generalize \(Q \)-learning to nondeterministic worlds)

 \[
 \hat{Q}_t(s, a) \leftarrow (1 - \alpha_t)\hat{Q}_{n-1}(s, a) + \alpha_t[r + \max_{a'}\hat{Q}_{n-1}(s', a')]
 \]

 where \(\alpha_t = \frac{1}{1 + \text{visits}_t(s, a)} \)

- \(\hat{Q} \) converges to \(Q \)
 [Watkins and Dayan, 1992]
Comments on
Q-Learning Update Rule

• Like $TD(0)$
 on-line sampling of transition probabilities

 ⊕ on-line sampling of actions

• After sampling from actions $a \in A$
 approximates full Bellman backup

 [Sample s' in proportion to $P(s'|s,a)$]

Note: With U, need $P(s'|s,a)$ to compute action

$$\pi(s) = \arg\max_a \sum_{s'} P(s'|s,a) U_t(s')$$

With Q, do NOT need $P(s'|s,a)$

$$\pi(s) = \arg\max_a \{ Q(s,a) \}$$
Issue:
Where to “Drive”, during Learning

• Given the $Q(\cdot, \cdot)$ value, optimal action is . . .
 $$\pi(s) = \arg\max_a \{ Q(s, a) \}$$

• How to learn these $Q(\cdot, \cdot)$ values?

• Why not just use “optimal action”?
 When learner reaches state s, perform action
 $$\arg\max_a \{ \hat{Q}_t(s, a) \}$$

• Can fall in a rut . . .
 A strategy might SEEM best (at time t)
 as other regions are NOT explored.
Just Exploring “Best” Action

RMS error in utility (greedy policy)

Policy loss (greedy policy)
Should learner just take apparently-best action?

- At time $t = 3$, may think best action is
 Everyone go RIGHT... $\pi^*, T([i, j]) = \text{Right}$

 Does ok... never consider
 $\pi([1, 1]) = \text{Up}$!

- Issue:
 - In general, need to observe all possible
 $\langle \text{state, action} \rangle$ pairs...
 - In practice, where to go each visit?

- How to balance
 \star exploring region
 \star exploiting “optimal” move
Approach: Explore/Exploit

- At time t, have estimates
 $\hat{Q}_t(s, a)$ for each state s, action a

 Let $f(u, n) = \begin{cases}
 R^+ & \text{if } n < T \\
 u & \text{otherwise}
 \end{cases}$

 Eg, $R^+ = 2$, $T = 5$

- Maintain count
 $N(s, a) = \text{#times took action } a \text{ from state } s$

- Select action
 $\arg\max_a \{ f(\hat{Q}_t(s, a), N(s, a)) \}$

Effect: Every action gets (at least) $T = 5$ attempts afterwards, just take best.
Results

Utility estimates over number of iterations:
- (4,3)
- (3,3)
- (2,3)
- (1,1)
- (3,1)
- (4,1)
- (4,2)

RMS error and policy loss over number of epochs:
- RMS error
- Policy loss
Comparison

- Q-learning converges in ≈ 26 trials

- Compare to standard U-learning:

(Using same exploration $R^+ = 2$, $T = 5$)

- Q-learning is worse
 - 26 vs 18 trials
 - Inferior final error

- Why?
 - Q does not enforce consistency (as no model)

- Clearly: if you have $P(s' | s, a)$ model should use it!
Temporal Difference Q-Learning

- Reduce discrepancy between successive Q estimates

 $(\hat{Q}_{(n)}$ and $\hat{Q}_{(n-1)})$

Q: When updating \hat{Q}, what should “more correct” value be?

- One step time difference:

 $Q^{(1)}(s_t, a_t) \equiv r_t + \gamma \max_a \{\hat{Q}(s_{t+1}, a)\}$

- Why not two steps?

 $Q^{(2)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \gamma^2 \max_a \{\hat{Q}(s_{t+2}, a)\}$

- Or n?

 $Q^{(n)}(s_t, a_t) \equiv r_t + \gamma r_{t+1} + \cdots + \gamma^{(n-1)} r_{t+n-1} + \gamma^n \max_a \{\hat{Q}(s_{t+n}, a)\}$

A: Blend all of these:

$Q^\lambda(s_t, a_t) \equiv (1 - \lambda) [Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \cdots]$
\[Q^\lambda(s_t, a_t) \equiv (1-\lambda) \left[Q^{(1)}(s_t, a_t) + \lambda Q^{(2)}(s_t, a_t) + \lambda^2 Q^{(3)}(s_t, a_t) + \cdots \right] \]

• Equivalent expression:

\[
Q^\lambda(s_t, a_t) = r_t + \gamma \left[(1 - \lambda) \max_a Q(s_t, a_t) + \lambda \ Q^\lambda(s_{t+1}, a_{t+1}) \right]
\]

• TD(\(\lambda\)) algorithm uses above training rule
 – Sometimes converges faster than \(Q\) learning
 – converges for any \(0 \leq \lambda \leq 1\) [Dayan, 1992]
 – Tesauro’s TD-Gammon uses this alg
Dimensions

Accessibility: In Accessible env, state ≡ percepts.

When Rewards: Are rewards only at TERMINAL states, or any state?

Prior Knowledge: Does agent initial know model M^α_{ij}, $R(s, a)$
or must it learn this,
as well as utility info?

Deterministic: Is $P(s_{t+1} | s_t, a_t) \in \{0, 1\}$?

Fixed / Changing Policy:

Given fixed policy:

Agent just “passively” watches world,
trying to learn utility of different states
“Active” agent changes policy.

Discount: Relative importance of current reward, vs future reward.

($\gamma = 1$, vs $\gamma < 1$)
Situations

Here: ALWAYS "accessible"
 Doesn’t matter:
 Rewards-only-at-Terminals?
 Discounted?
 \((Q\text{-learning proof needs } \lambda < 1)\)
 Deterministic?

• If ModelKnown, Fixed Policy:
 \(\Rightarrow\) #1A: evaluating fixed policy
 \textit{IMPROVEMENT}: stochastic approx: TD(\(\lambda\))

• If ModelKnown, \textit{Learning} Policy:
 \(\Rightarrow\) computing optimal policy
 Value Iteration, Policy Iteration, \ldots
 \textit{IMPROVEMENT}: scaling, generalization

• If Model \textit{NOT} Known, Learning Policy:
 \(\Rightarrow\) computing optimal policy (unknown)
 \textit{IMPROVEMENT}: Q-Learning
Subtleties and Ongoing Research

- Reinforcement learning for Hierarchical Problem Solvers

- Design optimal exploration strategies Occasionally perform new (non utility optimizing) move

 (see \textit{n-armed bandit} problem \cite{Russell+Norvig, p611})

- \textit{Inaccessible}: State only \textit{partially observable}

- Extend to continuous actions, states