Linear Classifiers
Outline

- Framework
- “Exact”
 - Minimize Mistakes (Perceptron Training)
 - Matrix inversion
- “Logistic Regression” Model
 - Max Likelihood Estimation (MLE) of \(P(y \mid x) \)
 - Gradient descent (MSE; MLE)
- “Linear Discriminant Analysis”
 - Max Likelihood Estimation (MLE) of \(P(y, x) \)
 - Direct Computation
Diagnosing Butterfly-itis

Hmmm... perhaps Butterfly-it is??
Classifier: Decision Boundaries

- **Classifier**: partitions input space X into “decision regions”
- **Linear threshold unit** has a linear decision boundary
- **Defn**: Set of points that can be separated by linear decision boundary is “linearly separable"
Linear Separators

- Draw “separating line”

- If \(\#\text{antennae} \leq 2 \), then butterfly-itis

- So \(?\) is Not butterfly-itis.
Can be “angled”…

\[2.3 \times \#w + 7.5 \times \#a + 1.2 > 0 \]

If \[2.3 \times \text{Wings} + 7.5 \times \text{antennae} + 1.2 \] > 0 then butterfly-itis
Linear Separators, in General

- Given data (many features)

<table>
<thead>
<tr>
<th></th>
<th>F_1</th>
<th>F_2</th>
<th>...</th>
<th>F_n</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>35</td>
<td>95</td>
<td>...</td>
<td>3</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>80</td>
<td>...</td>
<td>-2</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>50</td>
<td>...</td>
<td>1.9</td>
<td>No</td>
</tr>
</tbody>
</table>

- find “weights” \{w_1, w_2, \ldots, w_n, w_0\} such that

\[
w_1 \times F_1 + \ldots + w_n \times F_n + w_0 > 0
\]

means \textbf{Class = Yes}
Linear Separator

Just view $F_0 = 0$, so w_0 ...
Linear Separator

- Performance
 - Given \(\{w_i\} \), and values for instance, compute response

- Learning
 - Given labeled data, find “correct” \(\{w_i\} \)

- Linear Threshold Unit … “Perceptron”
Linear Separators – Facts

- GOOD NEWS:
 - If data is linearly separated,
 - Then FAST ALGORITHM finds correct \{w_i\} !
- But…
Linear Separators – Facts

GOOD NEWS:

- If data is linearly separated,
- Then FAST ALGORITHM finds correct \(\{w_i\} \)!

But…

Some “data sets” are NOT linearly separable!
Geometric View

- Consider 3 training examples:
 - Want classifier that looks like...
Linear Equation is Hyperplane

Equation $\mathbf{w} \cdot \mathbf{x} = \sum_i w_i \cdot x_i$ is plane

$$y(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{x} > 0 \\ 0 & \text{otherwise} \end{cases}$$
Linear Threshold Unit: “Perceptron”

- Squashing function:
 \[\text{sgn}: \mathbb{R} \rightarrow \{-1, +1\} \]

\[
\text{sgn}(r) = \begin{cases}
1 & \text{if } r > 0 \\
0 & \text{otherwise}
\end{cases}
\]

(“heaviside”)

- Actually \(\mathbf{w} \cdot \mathbf{x} > b \) but...

Create extra input \(x_0 \) fixed at 1

Corresponding \(w_0 \) corresponds to \(-b\)
Learning Perceptrons

- Can represent Linearly-Separated surface... any hyper-plane between two half-spaces...

- Remarkable learning algorithm: [Rosenblatt 1960]

 If function f can be represented by perceptron, then \exists learning alg guaranteed to quickly converge to f!

\Rightarrow enormous popularity, early / mid 60's

- But some simple fns cannot be represented (Boolean XOR) [Minsky/Papert 1969]

- Killed the field temporarily!
Perceptron Learning

- Hypothesis space is...
 - **Fixed Size:** \(\exists O(2^{n^2}) \) distinct perceptrons over \(n \) boolean features
 - **Deterministic**
 - **Continuous Parameters**

- Learning algorithm:
 - Various: **Local** search, **Direct** computation, . . .
 - **Eager**
 - **Online / Batch**
Task

- **Input:** labeled data

 Transformed to

- **Output:** \(w \in \mathbb{R}^{r+1} \)

Goal: Want\(w \) s.t.

\[\forall i \quad \text{sgn}(w \cdot [1, \ x^{(i)}]) = y^{(i)} \]

\[\ldots \text{minimize mistakes wrt data} \ldots \]
Error Function

Given data \{ [x^{(i)}, y^{(i)}] \}_{i=1..m}, optimize...

1. Classification error
 Perceptron Training; Matrix Inversion

2. Mean-squared error
 Matrix Inversion; Gradient Descent

3. (Log) Conditional Probability
 MSE Gradient Descent; LCL Gradient Descent

4. (Log) Joint Probability
 Direct Computation

\[
\text{err}_{\text{Class}}(w) = \frac{1}{m} \sum_{i=1}^{m} I[y^{(i)} \neq o_w(x^{(i)})]
\]

\[
\text{err}_{\text{MSE}}(w) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} [y^{(i)} - o_w(x^{(i)})]^2
\]

\[
\text{LCL}(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_w(y^{(i)}|x^{(i)})
\]

\[
\text{LL}(w) = \frac{1}{m} \sum_{i=1}^{m} \log P_w(y^{(i)}, x^{(i)})
\]
#1: Optimal Classification Error

- For each labeled instance \([x, y]\)
 \[\text{Err} = y - o_w(x)\]

 \(y = f(x)\) is target value
 \(o_w(x) = \text{sgn}(w \cdot x)\) is perceptron output

- **Idea**: Move weights in appropriate direction, to push \(\text{Err} \to 0\)

- If \(\text{Err} > 0\) (error on POSITIVE example)
 - need to increase \(\text{sgn}(w \cdot x)\)
 - need to increase \(w \cdot x\)
 - Input \(j\) contributes \(w_j \cdot x_j\) to \(w \cdot x\)
 - if \(x_j > 0\), increasing \(w_j\) will increase \(w \cdot x\)
 - if \(x_j < 0\), decreasing \(w_j\) will increase \(w \cdot x\)

 \[w_j \leftarrow w_j + x_j\]

- If \(\text{Err} < 0\) (error on NEGATIVE example)
 \[w_j \leftarrow w_j - x_j\]
#1a: Mistake Bound Perceptron Alg

Initialize \(\mathbf{w} = 0 \)
Do until bored
 Predict “+” iff \(\mathbf{w} \cdot \mathbf{x} > 0 \)
 else “−”
 Mistake on positive: \(\mathbf{w} \leftarrow \mathbf{w} + \mathbf{x} \)
 Mistake on negative: \(\mathbf{w} \leftarrow \mathbf{w} - \mathbf{x} \)

<table>
<thead>
<tr>
<th>Action Instance</th>
<th>Weights</th>
<th>Orig Data</th>
<th>Data + “(x_0 = 1)”</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>[0 0 0]</td>
<td>(\langle x_1 \ x_2 \rangle)</td>
<td>(c(x))</td>
</tr>
<tr>
<td>(i_1)</td>
<td></td>
<td>0 0</td>
<td>+</td>
</tr>
<tr>
<td>(i_2)</td>
<td></td>
<td>1 0</td>
<td>−</td>
</tr>
<tr>
<td>(i_3)</td>
<td></td>
<td>1 1</td>
<td>+</td>
</tr>
</tbody>
</table>
Mistake Bound Theorem

Theorem: [Rosenblatt 1960]
If data is consistent w/some linear threshold \(w \), then number of mistakes is \(\leq (1/\Delta)^2 \),
where \(\Delta = \min_{x} \frac{|w \cdot x|}{|w| \times |x|} \)

- \(\Delta \) measures “wiggle room” available:
 - If \(|x| = 1 \), then \(\Delta \) is max, over all consistent planes, of minimum distance of example to that plane
 - \(w \) is \(\perp \) to separator, as \(w \cdot x = 0 \) at boundary
 - So \(|w \cdot x| \) is projection of \(x \) onto plane, PERPENDICULAR to boundary line
 ... ie, is distance from \(x \) to that line (once normalized)
Proof of Convergence

For simplicity:
0. Use \(x_0 = 1 \), so target plane goes thru 0
1. Assume target plane doesn’t hit any examples
2. Replace negative point \(\langle x_0, x_1, \ldots, x_n \rangle 0 \) by positive point \(\langle -x_0, -x_1, \ldots, -x_n \rangle 1 \)
3. Normalize all examples to have length 1

- Let \(w^* \) be unit vector rep'ning target plane
 \(\Delta = \min_x \{ w^* \cdot x \} \)
 Let \(w \) be hypothesis plane

- Consider:
 \(\frac{(w \cdot w^*)}{|w|} \)

- On each mistake, add \(x \) to \(w \)

\[
\begin{align*}
\text{w} &= \sum_{\{x \mid x \cdot w < 0\}} x
\end{align*}
\]

\(x \) wrong wrt \(w \) iff \(w \cdot x < 0 \)
Proof (con't)

If w is mistake...

Numerator increases by $x \cdot w^* \geq \Delta$
(denominator)2 becomes

$$(w + x)^2 = w^2 + x^2 + 2(w \cdot x) < w^2 + 1$$
as $w \cdot x < 0$

As initially $w = \langle 0, \ldots, 0 \rangle$.

After m mistakes,

numerator is $\geq m \times \Delta$
(denominator)2 is $\leq 0 + \underbrace{1 + \ldots + 1}_m = m$

so denominator $\leq \sqrt{m}$

- As $(w \cdot w^*)/|w| = \cos(\text{angle between } w \text{ and } w^*)$
it must be ≤ 1, so
numerator \leq denominator

\[\Rightarrow \quad \Delta \times m \leq \sqrt{m} \quad \Rightarrow \quad m \leq \frac{1}{\Delta^2} \]
For each labeled instance \([x, y] \)
\[
\text{Err}([x, y]) = y - o_w(x) \in \{ -1, 0, +1 \}
\]

- If \(\text{Err}([x, y]) = 0 \) \text{Correct!} \ldots \text{Do nothing!} \\
 \[\Delta w = 0 \equiv \text{Err}([x, y]) \cdot x \]

- If \(\text{Err}([x, y]) = +1 \) \text{Mistake on positive!} \text{Increment by} \ +x \\
 \[\Delta w = +x \equiv \text{Err}([x, y]) \cdot x \]

- If \(\text{Err}([x, y]) = -1 \) \text{Mistake on negative!} \text{Increment by} \ -x \\
 \[\Delta w = -x \equiv \text{Err}([x, y]) \cdot x \]

In all cases...
\[
\Delta w^{(i)} = \text{Err}([x^{(i)}, y^{(i)}]) \cdot x^{(i)} = [y^{(i)} - o_w(x^{(i)})] \cdot x^{(i)}
\]

Batch
\[
\Delta w_j = \sum_i \Delta w_j^{(i)}
= \sum_i x_j^{(i)} (y^{(i)} - o_w(x^{(i)}))
\]
\[
w_j += \eta \Delta w_j
\]
\(\eta \) \text{ is learning rate (small pos “constant”} \ldots \approx 0.05? \)
0. New \mathbf{w}
1. For each row i, compute
 a. $\Delta \mathbf{w} = 0$
 b. $E^{(i)} = y^{(i)} - o_w(x^{(i)})$
 c. $\Delta \mathbf{w} +\! = E^{(i)} x^{(i)}$

 [... $\Delta w_j +\! = E^{(i)} x^{(i)}_j$...]

2. Increment $\mathbf{w} +\! = \eta \Delta \mathbf{w}$
Correctness

- Rule is intuitive: **Climbs in correct direction. . .**

- Thrm: Converges to correct answer, if . . .
 - training data is linearly separable
 - sufficiently small η

- Proof: Weight space has **EXACTLY 1 minimum!** (no non-global minima)
 \Rightarrow with enough examples, finds correct function!

- Explains early popularity

- If η too large, may overshoot
 If η too small, takes too long

- So often $\eta = \eta(k)$ … which decays with # of iterations, k
#1c: Matrix Version?

Task: Given \(\{ (x^i, y^i) \} \)
\[y^i \in \{-1, +1\} \] is label

Find \(w \) s.t.
\[
\begin{align*}
y^1 & = w_0 + w_1 x^1_1 + \cdots + w_n x_n^1 \\
y^2 & = w_0 + w_1 x^2_1 + \cdots + w_n x_n^2 \\
\vdots \\
y^m & = w_0 + w_1 x^m_1 + \cdots + w_n x_n^m \\
\end{align*}
\]

- Linear Equalities: \(y = Xw \)

\[
X = \begin{pmatrix}
1 & x^1_1 & \cdots & x^1_n \\
1 & x^2_1 & \cdots & x^2_n \\
\vdots & \vdots & \ddots & \vdots \\
1 & x^m_1 & \cdots & x^m_n
\end{pmatrix}
\]

\[
w = [w_0, w_1, \ldots, w_n]^\top
\]

- Solution: \(w = X^{-1}y \)
Issues

1. Why restrict to only \(y^i \in \{ -1, +1 \} \) ?
 - If from discrete set \(y^i \in \{ 0, 1, \ldots, m \} \): General (non-binary) classification
 - If ARBITRARY \(y^i \in \mathbb{R} \): Regression

2. What if NO \(\mathbf{w} \) works?
 ...\(\mathbf{X} \) is singular; overconstrained ...
 Could try to minimize residual

\[
\sum_i I[y^{(i)} \neq \mathbf{w} \cdot \mathbf{x}^{(i)}]
\]
\[
\| \mathbf{y} - \mathbf{X} \mathbf{w} \|_1 = \sum_i | y^{(i)} - \mathbf{w} \cdot \mathbf{x}^{(i)} |
\]
\[
\| \mathbf{y} - \mathbf{X} \mathbf{w} \|_2 = \sum_i (y^{(i)} - \mathbf{w} \cdot \mathbf{x}^{(i)})^2
\]

NP-Hard! \quad \Rightarrow \quad \text{Easy!}
L₂ error vs 0/1-Loss

- “0/1 Loss function” not smooth, differentiable
- MSE error is smooth, differentiable… and is overbound…
Gradient Descent for Perceptron?

- Why not Gradient Descent for THRESHOLDed perceptron?
- Needs gradient (derivative), not

Gradient Descent is General approach. Requires
 + continuously parameterized hypothesis
 + error must be differentiable wrt parameters
But . .
 – can be slow (many iterations)
 – may only find LOCAL opt
#1. LMS version of Classifier

- **View as Regression**
 - Find “best” linear mapping \mathbf{w} from \mathbf{X} to \mathbf{Y}
 - $\mathbf{w}^* = \text{argmin} \ Err_{\text{LMS}}^{(X,Y)}(\mathbf{w})$
 - $Err_{\text{LMS}}^{(X,Y)}(\mathbf{w}) = \sum_i (y^{(i)} - \mathbf{w} \cdot \mathbf{x}^{(i)})^2$
 - Threshold: if $\mathbf{w} \cdot \mathbf{x} > 0.5$, return 1; else 0

- See Chapter 3
Use Linear Regression for Classification?

1. Use regression to find weights w
2. Classify new instance x as $\text{sgn}(w \cdot x)$

- But ... regression minimizes sum of squared errors on target function
- ... which gives strong influence to outliers
#3: Logistic Regression

- Want to compute $P_w(y=1|\ x)$
 ... based on parameters w
- But …
 - $w \cdot x$ has range $[-\infty, \infty]$
 - probability must be in range $\in [0; 1]$
- Need “squashing” function $[-\infty, \infty] \rightarrow [0, 1]$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
Alternative Derivation…

\[P(+y|x) = \frac{P(x|+y)P(+y)}{P(x|+y)P(+y) + P(x|-y)P(-y)} \]

\[= \frac{1}{1 + \exp(-a)} \]

\[a = \ln \frac{P(x|+y)P(+y)}{P(x|-y)P(-y)} \]
Logistic Regression (con’t)

Assume 2 classes:

\[P_w(y=1|x) = \sigma(w \cdot x) = \frac{1}{1 + e^{-(x \cdot w)}} \]
\[P_w(y=-1|x) = 1 - \frac{1}{1 + e^{-(x \cdot w)}} = \frac{e^{-(x \cdot w)}}{1 + e^{-(x \cdot w)}} \]

Log Odds:

\[\log \frac{P_w(y=1|x)}{P_w(y=-1|x)} = x \cdot w \]
How to learn parameters w?

… depends on goal?

- A: Minimize MSE?
 \[\sum_i (y^{(i)} - o_w(x^{(i)}))^2 \]

- B: Maximize likelihood?
 \[\sum_i \log P_w(y^{(i)} | x^{(i)}) \]
MSError Gradient for Sigmoid Unit

Error: \[\sum_j (y^{(j)} - o_w(x^{(j)}))^2 = \sum_j E^{(j)} \]

For single training instance

Input: \(x^{(j)} = [x^{(j)}_1, \ldots, x^{(j)}_k] \)

Computed Output: \(o^{(j)} = \sigma(\sum_i x^{(j)}_i \cdot w_i) = \sigma(Z^{(j)}) \)

\[\text{where } Z^{(j)} = \sum_i x^{(j)}_i \cdot w_i \text{ using current } \{w_i\} \]

Correct output: \(y^{(j)} \)

Stochastic Error Gradient:

\[
\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \left[\frac{1}{2} (o - y)^2 \right] = \frac{1}{2} \left[2(o - y) \frac{\partial}{\partial w_i} (o - y) \right] \]

\[
= (o - y) \left(\frac{\partial o}{\partial w_i} \right) = (o - y) \frac{\partial \sigma(z)}{\partial z} \frac{\partial z}{\partial w_i} \]

\[
\sigma(z) = \frac{1}{1 + e^{-z}} \]
Derivative of Sigmoid

\[
\frac{d}{da} \sigma(a) = \frac{d}{da} \frac{1}{1+e^{-a}}
\]

\[
= \frac{-1}{(1+e^{-a})^2} \frac{d}{da} (1+e^{-a}) = \frac{-1}{(1+e^{-a})^2}(-e^{-a})
\]

\[
= \frac{e^{-a}}{(1+e^{-a})^2} = \frac{1}{(1+e^{-a})(1+e^{-a})} = \sigma(a) [1-\sigma(a)]
\]
Updating LR Weights (MSE)

- \[
\frac{\partial E}{\partial w_i} = (o - y) \frac{\partial \sigma(z)}{\partial z} \frac{\partial z}{\partial w_i}
\]

- Using:
 \[
 \frac{\partial \sigma(z)}{\partial z} = \sigma(z) (1 - \sigma(z)) = o(1-o)
 \]
 \[
 \frac{\partial z}{\partial w_i} = \frac{\partial (\sum_i w_i \cdot x_i)}{\partial w_i} = x_i
 \]

⇒
\[
\frac{\partial E(j)}{\partial w_i} = (o^{(j)} - y^{(j)}) o^{(j)} (1 - o^{(j)}) x_i^{(j)}
\]

Note: As already computed \(o^{(j)} = \sigma(z^{(j)}) \) to get answer, trivial to compute \(\sigma'(z^{(j)}) = \sigma(z^{(j)})(1 - \sigma(z^{(j)})) \)!

- Update \(w_i \) += \(\Delta w_i \) where

\[
\Delta w_i = \eta \cdot \frac{\partial E(j)}{\partial w_i}
\]
B: Or... Learn Conditional Probability

As fitting probability distribution, better to return probability distribution (≈ \(w \)) that is most likely, given training data, \(S \)

Goal: \(w^* = \arg \max_w \frac{P(S|w)P(w)}{P(S)} \)

= \(\arg \max_w P(S|w)P(w) \)

= \(\arg \max_w \log P(S|w) \)

Bayes Rules

As \(P(S) \) does not depend on \(w \)

As \(P(w) \) is uniform

As log is monotonic
ML Estimation

- $P(S | w) \equiv$ likelihood function

$$L(w) = \log P(S | w)$$

- $w^* = \text{argmax}_w L(w)$

is “maximum likelihood estimator” (MLE)
Computing the Likelihood

- As training examples \([x^{(i)}, y^{(i)}]\) are iid
 - drawn independently from same (unknown) prob \(P_w(x, y)\)

\[
\log P(S \mid w) = \log \prod_i P_w(x^{(i)}, y^{(i)})
\]

\[
= \sum_i \log P_w(x^{(i)}, y^{(i)})
\]

\[
= \sum_i \log P_w(y^{(i)} \mid x^{(i)}) + \sum_i \log P_w(x^{(i)})
\]

- Here \(P_w(x^{(i)}) = 1/n \ldots \)
 - not dependent on \(w\), over empirical sample \(S\)

\[w^* = \arg\max_w \sum_i \log P_w(y^{(i)} \mid x^{(i)})\]
Fit Logistic Regression…
by Gradient Ascent

- Want $w^* = \arg \max_w J(w)$

- $J(w) = \sum_i r(y^{(i)}, x^{(i)}, w)$

- For $y \in \{0, 1\}$

$$r(y, x, w) = \log P_w(\ y | \ x) = y \log(P_w(\ y=1 | \ x)) + (1 - y) \log(1 - P_w(\ y=1 | \ x))$$

- So climb along…

$$\frac{\partial J(w)}{\partial w_j} = \sum_i \frac{\partial r(y^{(i)}, x^{(i)}, w)}{\partial w_j}$$
Gradient Descent ...

\[\frac{\partial r(y, x, w)}{\partial w_j} = \frac{\partial}{\partial w_j} \left[y \log(p_1) + (1-y)\log(1-p_1) \right] = \frac{y}{p_1} \frac{\partial p_1}{\partial w_j} + (-1) \times \frac{1-y}{1-p_1} \frac{\partial p_1}{\partial w_j} = \frac{y-p_1}{p_1(1-p_1)} \frac{\partial p_1}{\partial w_j} \]

\[\frac{\partial p_1}{\partial w_j} = \frac{\partial P_w(y=1|x)}{\partial w_j} = \frac{\partial}{\partial w_j} (\sigma(x \cdot w)) = \sigma(x \cdot w)[1-\sigma(x \cdot w)] \frac{\partial}{\partial w_j} (x \cdot w) = p_1(1-p_1) \cdot x^{(i)}_j \]

\[\frac{\partial J(w)}{\partial w_j} = \sum_i \frac{\partial r(y^{(i)}, x^{(i)}, w)}{\partial w_j} = \sum_i \frac{y^{(i)}-p_1}{p_1(1-p_1)} p_1(1-p_1) \cdot x^{(i)}_j \]

\[= \sum_i (y^{(i)}-P_w(y=1|x)) \cdot x^{(i)}_j \]
Gradient Ascent for Logistic Regression (MLE)

Given: training examples \(\langle x^{(i)}, y^{(i)} \rangle, \ i = 1..N \)
Set initial weight vector \(w = \langle 0, 0, 0, 0, \ldots, 0 \rangle \)
Repeat until convergence

Let gradient vector \(\Delta w = \langle 0, 0, 0, 0, \ldots, 0 \rangle \)
For \(i = 1 \) to \(N \) do
\[p_1^{(i)} = \frac{1}{1 + \exp[w \cdot x^{(i)}]} \]
error\(_i\) = \(y^{(i)} - p_1^{(i)} \)
For \(j = 1 \) to \(n \) do
\[\Delta w_j \ += \ \text{error}_i \cdot x_{ij} \]
\(w \ += \ \eta \ \Delta w \) % step in direction of increasing gradient
Comments on MLE Algorithm

- This is BATCH;
 - obvious online alg (stochastic gradient ascent)
- Can use second-order (Newton-Raphson) alg for faster convergence
 - weighted least squares computation; aka “Iteratively-Reweighted Least Squares” (IRLS)
Use Logistic Regression for Classification

Return YES iff

\[
\frac{P(y=1|x)}{P(y=0|x)} > 0
\]

\[
\ln \frac{P(y=1|x)}{P(y=0|x)} = \ln \frac{1}{\exp(-w \cdot x)/(1 + \exp(-w \cdot x))} = w \cdot x > 0
\]

\[P(y=0|x) = \frac{1}{1 + \exp(-w \cdot x)} = \frac{1}{\exp(w \cdot x)} = w \cdot x > 0
\]

Logistic Regression learns a LTU!
Logistic Regression for $K > 2$ Classes

- To handle $K > 2$ classes
 - Let class K be "reference"
 - Represent each other class $k \neq K$ as logistic function of odds of class k versus class K:

 - Apply gradient ascent to learn all w_k weight vectors, in parallel.

 Conditional probabilities:
 \[
P(y = k \mid x) = \frac{\exp(w_k \cdot x)}{1 + \sum_{\ell=1}^{K-1} \exp(w_\ell \cdot x)}
 \]
 and
 \[
P(y = K \mid x) = \frac{1}{1 + \sum_{\ell=1}^{K-1} \exp(w_\ell \cdot x)}
 \]

 \[
 \begin{align*}
 \log \frac{P(y = 1 \mid x)}{P(y = K \mid x)} &= w_1 \cdot x \\
 \log \frac{P(y = 2 \mid x)}{P(y = K \mid x)} &= w_2 \cdot x \\
 \vdots & \quad \vdots \\
 \log \frac{P(y = K - 1 \mid x)}{P(y = K \mid x)} &= w_{K-1} \cdot x
 \end{align*}
 \]

 Note: $k-1$ different w_i weights, each of dimension $|x|$
Learning LR Weights

Task: Given data \(\{ (x^{(i)}, y^{(i)}) \} \)

find \(w \) in \(p_w(y|x) = \begin{cases} \frac{1}{1 + \exp(-w \cdot x)} & \text{if } y=1 \\ \frac{\exp(-w \cdot x)}{1 + \exp(-w \cdot x)} & \text{if } y=0 \end{cases} \)

s.t. \(p_w(y^{(i)}|x^{(i)}) > \frac{1}{2} \) \(\iff y^{(i)} = 1 \)

Approach 1: MSE — “Neural nets”

Minimize \(\sum_i (o^{(i)} - y^{(i)})^2 \)

Gradient:

\[\Delta w^{(i)}_j = (o^{(i)} - y^{(i)}) o^{(i)} (1 - o^{(i)}) \]

Approach 2: MLE — “Logistic Regression”

Maximize \(\sum_i p_w(y|x) \)

Gradient:

\[\Delta w^{(i)}_j = (y^{(i)} - p(1|x^{(i)})) x^{(i)}_j \]
(MaxProb)

0. New \mathbf{w}

1. For each row i, compute
 a. $\Delta \mathbf{w} = \mathbf{0}$
 b. $E^{(i)} = y^{(i)} (y^{(i)} - p(1|x^{(i)}))$
 c. $\Delta \mathbf{w} += E^{(i)} \mathbf{x}^{(i)}$
 [... $\Delta w_j += E^{(i)} x^{(i)}_j$...]

2. Increment $\mathbf{w} += \eta \Delta \mathbf{w}$
Logistic Regression Algs for LTUs

- Learns Conditional Probability Distribution $P(y \mid x)$

- **Local Search:**
 Begin with initial weight vector; iteratively modify to maximize objective function log likelihood of the data (ie, seek w s.t. probability distribution $P_w(y \mid x)$ is most likely given data.)

- **Eager:** Classifier constructed from training examples, which can then be discarded.

- **Online or batch**
LDA learns joint distribution $P(y, x)$

- As $P(y, x) \neq P(y | x)$; optimizing $P(y, x)$ does not equal optimizing $P(y | x)$

“generative model”
- $P(y, x)$ model of how data is generated
- Eg, factor

 $P(y, x) = P(y) P(x | y)$

- $P(y)$ generates value for y; then
- $P(x | y)$ generates value for x given this y

Belief net:
Linear Discriminant Analysis, con't

- \(P(y, x) = P(y) P(x \mid y) \)
- \(P(y) \) is a simple discrete distribution
 - Eg: \(P(y = 0) = 0.31; P(y = 1) = 0.69 \)
 (31% negative examples; 69% positive examples)
- Assume \(P(x \mid y) \) is multivariate normal, with mean \(\mu_k \) and covariance \(\Sigma \)

\[
P(x \mid y = k) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp \left[-\frac{1}{2}(x - \mu_k)^T \Sigma^{-1}(x - \mu_k) \right]
\]
Estimating LDA Model

- Linear discriminant analysis assumes form

\[
P(x,y) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_y)^\top \Sigma^{-1} (x - \mu_y) \right]
\]

- \(\mu_y \) is mean for examples belonging to class \(y \);
- covariance matrix \(\Sigma \) is shared by all classes!

- Can estimate LDA directly:

\[
m_k = \# \text{training examples in class } y = k
\]

- Estimate of \(P(y = k) \): \(p_k = m_k / m \)

\[
\hat{\mu}_k = \frac{1}{m} \sum_{i: y_i = k} x_i
\]

\[
\hat{\Sigma} = \frac{1}{m} \sum_i \frac{x_i - \hat{\mu}_y}{i} (x_i - \hat{\mu}_y)^\top
\]

(Subtract each \(x_i \) from corresponding \(x \) before taking outer product)
Example of Estimation

- $m = 7$ examples;
 $m_+ = 3$ positive; $m_- = 4$ negative
 $\Rightarrow \quad p_+ = \frac{3}{7} \quad p_- = \frac{4}{7}$

- Compute $\hat{\mu}_i$ over each class

 $\hat{\mu}_+ = \frac{1}{3} \sum_{i: \langle y^{(i)} \rangle = +} x^{(i)}$

 $= \frac{1}{3} \begin{pmatrix} 13.1, 20.2, 0.4 \end{pmatrix} + \begin{pmatrix} 6.0, 17.7, -4.2 \end{pmatrix} + \begin{pmatrix} 8.2, 18.2, -2.5 \end{pmatrix}$

 $= [9.1, 18.7, -2.1]$

 $\hat{\mu}_- = \frac{1}{4} \sum_{i: \langle y^{(i)} \rangle = -} x^{(i)} = [-1.8, 12.0, 16.3]$
Estimation...

- Compute common $\hat{\Sigma}$

- "Normalize" each $z := x - \mu_y(x)$

$z^{(1)} := [13.1, 20.2, 0.4] - [9.1, 18.7, -2.1]$
$\qquad = [4.0, 1.5, -1.7]$

\ldots

$z^{(4)} := [0.4, 10.1, 19.2] - [-1.8, 12.0, 16.3]$
$\quad = [2.2, -1.9, 2.9]$

$\ldots z^{(7)} := \ldots$

- Compute covariance matrix, for each i:

For $x^{(1)}$, via $z^{(1)}$:

$z^{(1)} \times z^{(1)^\top} = \begin{bmatrix} 4.0 \\ 0.5 \\ -1.7 \end{bmatrix} \cdot \begin{bmatrix} 4.0 \\ 0.5 \\ -1.7 \end{bmatrix}$

$\quad = \begin{bmatrix} 16.0 & 2.0 & -6.8 \\ 2.0 & 0.25 & -0.85 \\ -6.8 & -0.85 & 2.89 \end{bmatrix}$

$\quad = \frac{1}{m} \sum_i z^{(i)}z^{(i)^\top}$
Classifying, Using LDA

- How to classify new instance, given estimates

Eg, \(\hat{p}_+ = 3/7 \quad \hat{p}_- = 4/7 \)

\[
\begin{align*}
\hat{\mu}_+ &= [9.1, 18.7, -2.1] \\
\hat{\mu}_- &= [-1.8, 12.0, 16.3] \\
\hat{\Sigma} &= \begin{bmatrix}
7.22 & -1.31 & 6.35 \\
-1.31 & 2.91 & 0.32 \\
6.35 & 0.32 & 26.03
\end{bmatrix}
\end{align*}
\]

- Class for instance \(\mathbf{x} = [5, 14, 6] \)?

\[
P(y = +, \mathbf{x} = [5, 14, 6]) = \frac{3}{7} \times P(\mathbf{x} = [5, 14, 6] | y = +) \\
= \frac{3}{7} \times \frac{1}{(2\pi)^{3/2} |\hat{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \hat{\mu}_+)^\top \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mu}_+) \right] \\
= 16.63 \times 10^{-11}
\]

\[
P(y = -, \mathbf{x} = [5, 14, 6]) = \frac{4}{7} \times P(\mathbf{x} = [5, 14, 6] | y = -) \\
= \frac{4}{7} \times \frac{1}{(2\pi)^{3/2} |\hat{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \hat{\mu}_-)^\top \hat{\Sigma}^{-1} (\mathbf{x} - \hat{\mu}_-) \right] \\
= 43.33 \times 10^{-11}
\]

\[
P(y = + | [5, 14, 6]) = \frac{P(y = +, [5, 14, 6])}{P(y = +, [5, 14, 6]) + P(y = -, [5, 14, 6])} = 0.2774
\]

\[
P(y = - | [5, 14, 6]) = 0.7226
\]
LDA learns an LTU

- Consider 2-class case with a 0/1 loss function
- Classify $\hat{y} = 1$ if

\[
\log \frac{P(y = 1| x)}{P(y = 0| x)} > 0 \quad \text{iff} \quad \log \frac{P(y = 1, x)}{P(y = 0, x)} > 0
\]

\[
\frac{P(x, y = 1)}{P(x, y = 0)} = \frac{P(y = 1)}{P(y = 0)} \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_1)^T \Sigma^{-1} (x - \mu_1) \right] \frac{P(y = 1)}{P(y = 0)} \exp \left[-\frac{1}{2} (x - \mu_0)^T \Sigma^{-1} (x - \mu_0) \right]
\]

\[
\ln \frac{P(x, y = 1)}{P(x, y = 0)} = \ln \frac{P(y = 1)}{P(y = 0)} - \frac{1}{2} [(x - \mu_1)^T \Sigma^{-1} (x - \mu_1) - (x - \mu_0)^T \Sigma^{-1} (x - \mu_0)]
\]
LDA Learns an LTU (2)

- \((x-\mu_1)^T \Sigma^{-1} (x-\mu_1) - (x-\mu_0)^T \Sigma^{-1} (x-\mu_0)\)

 \[
 = x^T \Sigma^{-1} (\mu_0 - \mu_1) + (\mu_0 - \mu_1)^T \Sigma^{-1} x + \mu_1^T \Sigma^{-1} \mu_1 - \mu_0^T \Sigma^{-1} \mu_0
 \]

- As \(\Sigma^{-1}\) is symmetric,

\[
\ln \frac{P(x, y = 1)}{P(x, y = 0)} = \ln \frac{P(y = 1)}{P(y = 0)} - \frac{1}{2} [(x - \mu_1)^T \Sigma^{-1} (x - \mu_1) - (x - \mu_0)^T \Sigma^{-1} (x - \mu_0)]
\]

\[
= x^T \Sigma^{-1} (\mu_1 - \mu_0) + \ln \frac{P(y = 1)}{P(y = 0)} + \frac{1}{2} \mu_0^T \Sigma^{-1} \mu_0 - \frac{1}{2} \mu_1^T \Sigma^{-1} \mu_1
\]
LDA Learns an LTU (3)

\[
\ln \frac{P(x, y = 1)}{P(x, y = 0)} = x^\top \Sigma^{-1}(\mu_1 - \mu_0) + \ln \frac{P(y=1)}{P(y=0)} + \frac{1}{2} \mu_0^\top \Sigma^{-1} \mu_0 - \frac{1}{2} \mu_1^\top \Sigma^{-1} \mu_1
\]

- So let...

\[
w = \Sigma^{-1}(\mu_1 - \mu_0)
\]

\[
c = \ln \frac{P(y=1)}{P(y=0)} + \frac{1}{2} \mu_0^\top \Sigma^{-1} \mu_0 - \frac{1}{2} \mu_1^\top \Sigma^{-1} \mu_1
\]

- Classify \(\hat{y} = 1 \) iff \(w \cdot x + c > 0 \)

LTU!!
Variants of LDA

- Covariance matrix Σ
- n features; k classes

<table>
<thead>
<tr>
<th>Same for all classes?</th>
<th>Diagonal</th>
<th>#param’s</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>k</td>
<td>LDA</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>n^2</td>
<td>Naïve Gaussian Classifier</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>k , n^2</td>
<td>General Gaussian Classifier</td>
</tr>
</tbody>
</table>
Generalizations of LDA

- **General Gaussian Classifier**
 Allow each class k to have its own Σ_k
 \Rightarrow Classifier \equiv quadratic threshold unit (not LTU)

- **Naïve Gaussian Classifier**
 Allow each class k to have its own Σ_k
 but require each Σ_k be diagonal.
 \Rightarrow within each class,
 any pair of features x_i and x_j are independent
 \Box Classifier is still quadratic threshold unit
 but with a restricted form
Summary of Linear Discriminant Analysis

- Learns Joint Probability Distr'n $P(y, x)$
- **Direct Computation.**
 MLEstimate of $P(y, x)$ computed directly from data without search.
 But need to invert matrix, which is $O(n^3)$
- **Eager:**
 Classifier constructed from training examples, which can then be discarded.
- **Batch:** Only a batch algorithm.
 An online LDA alg requires online alg for incrementally updating Σ^{-1}
 [Easy if Σ^{-1} is diagonal. . .]
Two Geometric Views of LDA
View 1: Mahalanobis Distance

- Squared Mahalanobis distance between \mathbf{x} and μ
 \[
 D_M^2(\mathbf{x}, \mu) = (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)
 \]

 $\Sigma^{-1} \approx$ linear distortion

 … converts standard Euclidean distance into Mahalanobis distance.

- LDA classifies \mathbf{x} as 0 if
 \[D_M^2(\mathbf{x}, \mu_0) < D_M^2(\mathbf{x}, \mu_1)\]

- \[
 \log P(\mathbf{x} \mid y = k) \approx \log \pi_k - \frac{1}{2} D_M^2(\mathbf{x}, \mu_k)
 \]
View 2: Most Informative Low Dimensional Projection

- LDA
 - Finds \(K-1 \) dim hyperplane (\(K = \) number of classes)
 - Project \(\mathbf{x} \) and \(\{ \mu_k \} \) to that hyperplane
 - Classify \(\mathbf{x} \) as nearest \(\mu_k \) within hyperplane

- Goal: Hyperplane that maximally separates projection of \(\mathbf{x} \)'s wrt \(\sum^{-1} \)

\[\mathbf{w} \approx \text{Fisher's Linear Discriminant} \]
Fisher Linear Discriminant

- Recall any vector \mathbf{w} projects $\mathbb{R}^n \rightarrow \mathbb{R}$
- Goal: Want \mathbf{w} that “separates” classes
 - Each $\mathbf{w} \cdot \mathbf{x}^+$ far from each $\mathbf{w} \cdot \mathbf{x}^-$

- Using $\mathbf{m}_+ = \frac{\sum_i y^{(i)} \cdot x^{(i)}}{\sum_i y^{(i)}}$ $\mathbf{m}_- = \frac{\sum_i (1-y^{(i)}) \cdot x^{(i)}}{\sum_i (1-y^{(i)})}$

- Mean of \mathbf{x}'s projections:
 - $m_+ = \frac{\sum_i y^{(i)} \mathbf{w}^\top \cdot x^{(i)}}{\sum_i y^{(i)}} = \mathbf{w}^\top \cdot \mathbf{m}_+$
 - $m_- = \frac{\sum_i (1-y^{(i)}) \mathbf{w}^\top \cdot x^{(i)}}{\sum_i (1-y^{(i)})} = \mathbf{w}^\top \cdot \mathbf{m}_-$

- Perhaps project on $\mathbf{m}_+ - \mathbf{m}_-$?
- Still overlap… why?
Fisher Linear Discriminant

- Using $\mathbf{m}_+ = \frac{\sum_i y^{(i)} \cdot x^{(i)}}{\sum_i y^{(i)}}$ and $\mathbf{m}_- = \frac{\sum_i (1-y^{(i)}) \cdot x^{(i)}}{\sum_i (1-y^{(i)})}$

- Mean of x's projections:
 - $\mathbf{m}_+ = \frac{\sum_i y^{(i)} \mathbf{w}^\top \cdot x^{(i)}}{\sum_i y^{(i)}} = \mathbf{w}^\top \cdot \mathbf{m}_+$
 - $\mathbf{m}_- = \frac{\sum_i (1-y^{(i)}) \mathbf{w}^\top \cdot x^{(i)}}{\sum_i (1-y^{(i)})} = \mathbf{w}^\top \cdot \mathbf{m}_-$

- Problem with $\mathbf{m}_+ - \mathbf{m}_-$:
 - Doesn’t consider “scatter” within class
 - Goal: Want \mathbf{w} that “separates” classes

 - Each $\mathbf{w} \cdot x^+$ far from each $\mathbf{w} \cdot x^-$
 - Positive x^+'s: $\mathbf{w} \cdot x^+$ close to each other
 - Negative x^-'s: $\mathbf{w} \cdot x^-$ close to each other

- “scatter” of +instance; –instance
 - $\mathbf{s}_+^2 = \sum_i y^{(i)} (\mathbf{w} \cdot x^{(i)} - \mathbf{m}_+)^2$
 - $\mathbf{s}_-^2 = \sum_i (1 - y^{(i)}) (\mathbf{w} \cdot x^{(i)} - \mathbf{m}_+)^2$
Fisher Linear Discriminant

- Recall any vector \(\mathbf{w} \) projects \(\mathbb{R}^n \rightarrow \mathbb{R} \)

- Goal: Want \(\mathbf{w} \) that “separates” classes
 - Positive \(\mathbf{x}^+ \)'s: \(\mathbf{w} \cdot \mathbf{x}^+ \) close to each other
 - Negative \(\mathbf{x}^- \)'s: \(\mathbf{w} \cdot \mathbf{x}^- \) close to each other
 - Each \(\mathbf{w} \cdot \mathbf{x}^+ \) far from each \(\mathbf{w} \cdot \mathbf{x}^- \)

- Using \(\mathbf{m}_+ = \frac{\sum_i y^{(i)} \cdot \mathbf{x}^{(i)}}{\sum_i y^{(i)}} \quad \mathbf{m}_- = \frac{\sum_i (1-y^{(i)}) \cdot \mathbf{x}^{(i)}}{\sum_i (1-y^{(i)})} \)

 \[m_+ = \frac{\sum_i y^{(i)} \cdot \mathbf{w}^T \cdot \mathbf{x}^{(i)}}{\sum_i y^{(i)}} = \mathbf{w}^T \cdot \mathbf{m}_+ \]

 \[m_- = \frac{\sum_i (1-y^{(i)}) \cdot \mathbf{w}^T \cdot \mathbf{x}^{(i)}}{\sum_i (1-y^{(i)})} = \mathbf{w}^T \cdot \mathbf{m}_- \]

- “scatter” of +instance; –instance
 - \(\mathbf{s}_+^2 = \sum_i y^{(i)} \left(\mathbf{w} \cdot \mathbf{x}^{(i)} - \mathbf{m}_+ \right)^2 \)
 - \(\mathbf{s}_-^2 = \sum_i (1 - y^{(i)}) \left(\mathbf{w} \cdot \mathbf{x}^{(i)} - \mathbf{m}_+ \right)^2 \)
FLD, con't

- Separate means \(m_- \) and \(m_+ \)
 \(\Rightarrow \) maximize \((m_- - m_+)^2 \)
- Minimize each spread \(s_+^2, s_-^2 \)
 \(\Rightarrow \) maximize \((s_+^2 + s_-^2) \)
- Objective function: maximize

\[
\begin{align*}
#1: (m_- - m_+)^2 &= (\mathbf{w}^\top \mathbf{m}_+ - \mathbf{w}^\top \mathbf{m}_-)^2 \\
&= \mathbf{w}^\top (\mathbf{m}_+ - \mathbf{m}_-)(\mathbf{m}_+ - \mathbf{m}_-)^\top \mathbf{w} = \mathbf{w}^\top \mathbf{S}_B \mathbf{w} \\
&= \text{“between-class scatter”} \quad \mathbf{S}_B = (\mathbf{m}_+ - \mathbf{m}_-)(\mathbf{m}_+ - \mathbf{m}_-)^\top
\end{align*}
\]

\[
J_S(\mathbf{w}) = \frac{(m_+ - m_-)^2}{(s_+^2 + s_-^2)}
\]
FLD, III

- $s_+^2 = \sum_i y^{(i)} (\mathbf{w} \cdot \mathbf{x}^{(i)} - m_+)^2$

 $= \sum_i \mathbf{w}^\mathsf{T} y^{(i)} (\mathbf{x}^{(i)} - m_+) (\mathbf{x}^{(i)} - m_+) \mathbf{w}$

 $= \mathbf{w}^\mathsf{T} \mathbf{S}_+ \mathbf{w}$

$\mathbf{S}_+ = \sum_i y^{(i)} (\mathbf{x}^{(i)} - m_+) (\mathbf{x}^{(i)} - m_+) \mathbf{w}$

... “within-class scatter matrix” for +

- $\mathbf{S}_- = \sum_i (1 - y^{(i)}) (\mathbf{x}^{(i)} - m_-) (\mathbf{x}^{(i)} - m_-) \mathbf{w}$

... “within-class scatter matrix” for −

- $\mathbf{S}_w = \mathbf{S}_+ + \mathbf{S}_-$

so $s_+^2 + s_-^2 = \mathbf{w}^\mathsf{T} \mathbf{S}_w \mathbf{w}$

$$J_S(\mathbf{w}) = \frac{(m_+ - m_-)^2}{(s^2_+ + s^2_-)}$$
FLD, IV

$$J_S(w) = \frac{(m_+ - m_-)^2}{(s_+^2 + s_-^2)} = \frac{w^T S_B w}{w^T S_w w} = \frac{(w^T (m_1 - m_2))^2}{w^T S_w w}$$

Solving \(\frac{\partial J_S(w)}{\partial w_j} = 0 \) \(\Rightarrow \)

\(w = \alpha S_B^{-1}(m_+ - m_-) \)
FLD, V

\[J_S(w) = \frac{(m_+ - m_-)^2}{s_+^2 + s_-^2} = \frac{w^T S_B w}{w^T S_w w} = \frac{(w^T (m_1 - m_2))^2}{w^T S_w w} \]

Solving \[\frac{\partial J_S(w)}{\partial w_j} = 0 \Rightarrow w = \alpha S_B^{-1}(m_+ - m_-) \]

When \[P(x \mid y_i) \sim N(\mu_i; \Sigma) \]
\[\exists \text{LINEAR DISCRIMINANT: } w = \sum^{-1}(\mu_+ - \mu_-) \]

⇒ FLD is optimal classifier, if classes normally distributed

Can use even if not normal:
After projecting d-dim to 1, just use any classification method

Analogous derivation for \(K > 2 \) classes
Comparing LMS, Logistic Regression, LDA

- Which is best: LMS, LR, LDA?
- Ongoing debate within machine learning community about relative merits of
 - direct classifiers \([LMS]\)
 - conditional models \(P(y|x)\) \([LR]\)
 - generative models \(P(y, x)\) \([LDA]\)
- Stay tuned...
Issues in Debate

- **Statistical efficiency**
 If generative model \(P(y, x) \) is correct, then ... usually gives better accuracy, particularly if training sample is small.

- **Computational efficiency**
 Generative models typically easiest to compute (LDA computed directly, without iteration)

- **Robustness to changing loss functions**
 LMS must re-train the classifier when the loss function changes. ... no retraining for generative and conditional models

- **Robustness to model assumptions.**
 Generative model usually performs poorly when the assumptions are violated.
 Eg, LDA works poorly if \(P(x | y) \) is non-Gaussian.
 Logistic Regression is more robust, ... LMS is even more robust

- **Robustness to missing values and noise.**
 In many applications, some of the features \(x_{ij} \) may be missing or corrupted for some of the training examples.
 Generative models typically provide better ways of handling this than non-generative models.
Other Algorithms for learning LTUs

- **Naive Bayes** [Discuss later]
 For $K = 2$ classes, produces LTU

- **Winnow** [Discuss later?]
 Can handle large numbers of “irrelevant” features
 - (features whose weights should be zero)