Instructors: R Greiner, B. Póczos
Due Date: 12:30pm, Tues, 3/Nov/09
The following exercises are intended to further your understanding of Linear Algebra (eigenvalues, ...), Dual Formulation, Lagrange Multiplier, Kernel Methods, Perceptrons, SVMs

Relevant reading: FTH: Chapters 5.8 and 12 (esp 12.3) + readings shown below.
Undergrads: solve problems 1–13
Grads: solve (all) problems 1–15
The HW2-ReadMe.html file describes the details of exactly what to hand in.

Total points: UGrad: 116 Grad: 162

[Hint: Several problems below extends results of previous problems...]

Question 1 [12 points] Positive semi definite matrices
The finite-dimensional spectral theorem says that any symmetric matrix $A \in \mathbb{R}^{n \times n}$ can be diagonalized by an orthogonal matrix. More explicitly: For every symmetric real matrix A there exists a real orthogonal matrix U such that $D = U^T AU \in \mathbb{R}^{n \times n}$ is a diagonal matrix. (Orthogonal means $U^T U = I$ where I is the identity matrix.) This matrix is “positive semi definite” (psd) iff $v^T Av \geq 0 \ \forall v \in \mathbb{R}^n$.

a [4]: Use this theorem to prove that the eigenvalues of a symmetric matrix are real, and
b [4]: the eigenvectors $\{u^i\}$ are orthogonal (i.e., $\langle u^i, u^j \rangle = 0$ when $i \neq j$).
c [4]: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$. Prove that A is positive semi definite iff $\lambda_i \geq 0 \ \forall i = 1, \ldots n$.

[Hint: $x^T x \geq 0$ for all $x \in \mathbb{R}^n$. See also
http://en.wikipedia.org/wiki/Eigenvalue,_eigenvector_and_eigenspace

Question 2 [4 points] Sum of positive semi definite matrices
Assume that K_1, K_2 are positive semi definite matrices.

a [2]: Prove that, for any positive real constants $c_1, c_2 > 0$, $c_1 K_1 + c_2 K_2$ is psd.
b [2]: Prove that $K_1 - K_2$ is not necessarily psd.

Question 3 [4 points] Constructing kernels
Let $k_1(x, \tilde{x})$ and $k_2(x, \tilde{x})$ be valid kernel functions, and $c_1, c_2 > 0$ be positive real constants.

a [2]: Show that $c_1 k_1(x, \tilde{x}) + c_2 k_2(x, \tilde{x})$ is a valid kernel function, too.
b [2]: Show that $k_1 - k_2$ is not necessarily positive semi definite.
Question 4 [12 points] Elementwise product of two positive semi definite matrices
Let $K_1, K_2 \in \mathbb{R}^{n \times n}$ be two positive semi definite matrices. Prove that their elementwise product matrix $K(i,j) = K_1(i,j)K_2(i,j)$ is positive semi definite matrix, too.

[Hint: Consider combining two independent n-dimensional vectors $u = (u_1, \ldots, u_n)^T \sim N(0, K_1)$ and $v = (v_1, \ldots, v_n)^T \sim N(0, K_2)$, each drawn from its own Gaussian distribution.]

Question 5 [4 points] Constructing kernels
Let $k_1(x, \tilde{x})$ and $k_2(x, \tilde{x})$ be valid kernel functions. Show that $k_1(x, \tilde{x})k_2(x, \tilde{x})$ is also a valid kernel function.

Question 6 [4 points] Product of positive semi definite matrices
Let $A, B \in \mathbb{R}^{n \times n}$ be psd matrices.

a [2]: Show that AB is not necessarily positive semi definite.

[Hint: Does AB have to be symmetric?]

b [2]: Show that A^m is positive semi definite for all $m \in \mathbb{Z}_+$.

Question 7 [2 points] Non kernel
We know that $\exp(-\|x - y\|^2)$ is a kernel function. Show that

$$\exp(\|x - y\|^2)$$

is not a valid kernel.

Question 8 [16 points] Perceptron [Implementation]

a [6]: Describe when you expect the Primal to be faster than the Dual. ... and vice versa.

b [10]: Implement the perceptron classification algorithm in Primal and Dual form. Try to classify a 2D dataset, using “linear”, “polynomial” and “RBF” kernels. The HW2-ReadMe.html file provides several datasets to play with both linearly separable and non-separable cases. (It also specifies exactly what you should submit.)

Question 9 [30 points] SVM [Implementation]
Recall the primal problem for SVM is:

$$\min_w \frac{1}{2}\|w\|^2 + C \sum_{i=1}^{m} \xi_i$$

subject to

$$y_i \langle x_i, w \rangle \geq 1 - \xi_i, \quad (i = 1, \ldots, m)$$

$$\xi_i \geq 0, \quad (i = 1, \ldots, m)$$

[[Correction (14/Oct): changed from ξ to ξ_i above.]]

a [6]: Show that this is the same as

$$\min_w \sum_{i=1}^{m} [1 - y_i \langle x_i, w \rangle]_+ + \lambda \|w\|^2$$
where in general \(r_+ = \begin{cases} r & \text{if } r \geq 0 \\ 0 & \text{otherwise} \end{cases} \) is the positive part of \(r \).

b [4]: Describe when you expect the Primal to be faster than the Dual. . . and vice versa.

c [20]: Implement the soft SVM classification problem in Primal and Dual form. (You MAY use the ’quadprog’ Matlab command... but may NOT use SVM toolboxes.)

The HW2-ReadMe.html file provides a number of datasets. Compare the classification accuracy of your method using ’linear’, ’polynomial(\(k \))’, and ’RBF’ kernels. Feel free to play with the \(k \) and “\(C \)” parameters. The HW2-ReadMe.html file also specifies exactly what you should submit here.

Question 10 [14 points] Constructing feature map in finite case [Implement]

Let \(\mathcal{X} = \{ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5 \} \) consist of the following five 2D points:

\[
\begin{array}{c}
0 & 1 \\
2 & 3 \\
3 & 1 \\
1.5 & 1.5
\end{array}
\]

a [2]: Plot these points using Matlab.

b [2]: Consider the kernel

\[k(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{8}) \quad 1 \leq i, j \leq 5 \]

Use Matlab to show that its Gram matrix is positive semi definite, and thus that this \(k(\cdot, \cdot) \) is a valid kernel.

c [6]: Using Matlab construct a feature map \(\phi: \mathcal{X} \rightarrow \mathbb{R}^5 \) that is compatible with kernel \(k \).

d [4]: Verify if the constructed feature map is good i.e., if the inner product between \(\phi(\mathbf{x}_i) \) and \(\phi(\mathbf{x}_j) \) in the feature space is equal to the values of the kernel function \(k(\mathbf{x}_i, \mathbf{x}_j) \).

Question 11 [4 points] \(l_p^2 \) norms [Matlab exploration]

The HW2-ReadMe.html file provides three different 20 dimensional vectors \(\mathbf{x} \), each with only a few non-0 coordinates.

a [2]: For \(p \in \left\{ \frac{1}{128}, \frac{1}{32}, \frac{1}{2}, 1, 2, 8, 32, 128 \right\} \), plot \(\|\mathbf{x}\|_p^2 = \sum_{i=1}^{20} |x_i|^p \)
and \(\|\mathbf{x}\|_p = (\sum_{i=1}^{20} |x_i|^p)^{1/p} \). You should probably use log-scale for the Y axis. (In Matlab: set(gca,’Yscale’,’log’).)

The HW2-ReadMe.html file specifies exactly what you should submit here.

b [2]: What happens when \(p \rightarrow 0 ? \ldots \) and when \(p \rightarrow \infty \)?

Question 12 [4 points] Representor theorem

a [2]: Let \(\mathcal{F} \) be an RKHS function space with kernel \(k(\cdot, \cdot) \). Let \(\{ (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m) \} \) be \(m \) training input-output pairs. Our task is to find the \(f^* \in \mathcal{F} \) function that minimizes the following regularized functional:

\[
f^* = \arg \min_{f \in \mathcal{F}} \left(\prod_{i=1}^{m} |f(\mathbf{x}_i)|^6 \right) \sum_{i=1}^{m} \left[|\sin (\|\mathbf{x}_i\| y_i - f(\mathbf{x}_i))| \right] |25 + y_i|f(\mathbf{x}_i)|^{12} + \exp(\|f\|_\mathcal{F})
\]
This is a nonparametric minimization problem over functions in the function space \mathcal{F}. Prove that f^* can be expressed as $f^*(\cdot) = \sum_{i=1}^{m} \alpha_i k(x_i, \cdot)$, reducing the problem to an m-dimensional minimization [with respect to $(\alpha_1, \ldots, \alpha_m)$] only.

b [2]: Now consider

$$g^* = \arg \min_{g \in \mathcal{F}} \|g\|_{\mathcal{F}} \sum_{i=1}^{m} \left[\sin \left(\|x_i\| |y_i - g(x_i)| \right)^{25} + y_i |g(x_i)|^{42} \right] + \exp(\|g\|_{\mathcal{F}})$$

Can you use the representer theorem to express $g^*(\cdot) = \sum_{j=1}^{n} \alpha_j k(x_j, \cdot)$ for some α_j’s? Explain.

Question 13 [6 points] Lagrange multipliers, discrete random variables

A discrete distribution $p = (p_1, p_2, \ldots, p_n)$ has $\sum p_i = 1$ and $p_i \geq 0$ for all i. The entropy, which measures the uncertainty of a distribution, is defined by $H(p) = -\sum_{i=1}^{n} p_i \log p_i$. (Note we define $0 \log 0 = 0$).

a [1]: Prove that the entropy is 0 for the $(p_1 = 1, p_2 = \ldots = p_n = 0)$ deterministic distribution.

b [5]: Show that the uniform distribution has the largest entropy.

Question 14 [16 points] Lagrange multipliers, continuous random variables [Grad only]

The entropy of a continuous distribution with density function f is defined by $H(f) = -\int f(x) \log f(x) \, dx$. Let X be a random variable with density f.

a [8]: Prove that if $\mathbb{E}_f[X] = 0$ and $\mathbb{E}_f[X^2] = \sigma^2$, then the Gaussian distribution $N(0, \sigma^2)$ has the maximal entropy.

[Hint: Use Lagrange multipliers, and $\frac{\partial}{\partial f(y)} \int r(x) f(x) \, dx = r(y)$ when $r(.)$ is not related to $f(.)$. (Note $\frac{\partial}{\partial f(y)} \int f(x) \log(f(x)) \, dx = \log(f(y)) + 1$.) http://en.wikipedia.org/wiki/Functional_derivative

Also, if a density has the form “$a \exp((x-b)^2/2c^2)$” for any real constants a, b and c, then it must be the density of the normal distribution.]

b [8]: Prove that if support(f) = $[0, \infty]$, and $E[X] = \mu$, then the exponential distribution ($f(x) = \frac{1}{\mu} \exp(-\frac{x}{\mu})$) has the largest entropy.

[Hint: For support, see http://en.wikipedia.org/wiki/Support_(mathematics)]

Question 15 [30 points] SVM, Quadratic Approximation, Dual form, Lagrange multipliers [Grad only]

Given the following primal “quadratic version” of the soft SVM classification problem:

$$\min_{\frac{1}{2}} \|w\|^2 + C \sum_{i=1}^{m} \xi_i^2$$

subject to

$$y_i \langle x_i, w \rangle \geq 1 - \xi, \quad (i = 1, \ldots, m)$$

$$\xi \geq 0, \quad (i = 1, \ldots, m)$$

What are the dual equations?