Constraint Satisfaction Problems

• Intro CSP
 Def’n, Examples, Types

• Naive Generate-\&-Test

• Complexity

• Improvements to Generate-\&-Test

• Special Case:
 Tree structured constraints

• Constraint Optimization Problems
Example: Map Coloring

- **Variables:** \{ V, T, WA, NT, SA, Q, NSW \}
- **Domains:** \(D_i = \{ r, g, b \} \)
 (same domain for each)
- **Constraints:** No adjacent “countries” can have same color

 \(C_{WA, NT} \) constrains values for WA and NT:
 \[\cdots C_{WA, NT} = \{ \langle r, g \rangle, \langle r, b \rangle, \langle g, r \rangle, \langle g, b \rangle, \langle b, r \rangle, \langle b, g \rangle \} \]

- Similarly:

 \(C_{WA, NT}, C_{WA, SA}, C_{NT, SA}, C_{NT, Q}, C_{SA, Q}, C_{SA, NSW}, C_{SA, V}, C_{Q, NSW}, C_{NSW, V} \)
Formal Def’n of CSP

- Constraint Satisfaction Problem (CSP):

 \[\mathcal{X} = \{X_1, X_2, \ldots, X_n\} \quad \text{set of variables} \]
 \[\quad \text{each with finite domain } \mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n. \]
 \[\mathcal{C} = \{C_1, C_2, \ldots, C_m\} \quad \text{set of constraints} \]

- Each constraint \(C_i \):
 - deals with subset of variables \(\{X_1, X_7, X_8\} \)
 - restricts values assigned to those var’s

 (specifies which value-sets are compatible for those variables)

- A solution is
 assignment of values to all variables that satisfies all constraints.
Example:
\[
\begin{array}{c}
\text{SEND} \\
+ \text{MORE} \\
\hline
\text{MONEY}
\end{array}
\]

Find subst. of digits for letters s.t. sum is correct.
(Each letter stands for different digit.)

- **Variables:** \(\{S, E, N, D, M, O, R, Y\} \)

- **Domains:** \(D_i = \{0, \ldots, 9\} \ \forall i \)

- **Constraints#1:**
 \[
 (1000 \times S + 100 \times E + 10 \times N + D) \\
 + (1000 \times M + 100 \times O + 10 \times R + E) \\
 = (10000 \times M + 1000 \times O + 100 \times N + 10 \times E + Y)
 \]

 Unique: each letter is different
 \(S \neq E, \ S \neq N, \ \ldots \)

- **Constraints#2:**
 \[
 D + E \quad = \quad Y + 10 \times c_1 \\
 N + R + c_1 \quad = \quad E + 10 \times c_2 \\
 E + O + c_2 \quad = \quad N + 10 \times c_3 \\
 S + M + c_3 \quad = \quad O + 10 \times M
 \]

 + Unique: each letter is different \ldots
Examples

- Assignment problems
 ...who teaches what class

- Time-tableing problems
 ...which class is offered when & where?

- Hardware configuration

- Spreadsheets

- Transportation scheduling

- Factory scheduling

- Floor-planning

- Map-coloring
 Crypto-arithmetic
Constraint Satisfaction/Optimization Problems

- Scheduling Courses:
 Assign time/prof/room to each course
 - “Hard Constraints” (requirements)
 + Prof can only be at one place at any time
 + Course + Lab must be at different times
 + Only one course to a room, . . .
 - “Soft Constraints” (preferences)
 + Companion classes should be close in time
 + Avoid 8am
 + Minimize total number of rooms used. . .

 + scheduling maintenance, equipment usage, . . .

- VLSI Layout:
 Find position for various subparts
 - “Hard Constraints”
 + Achieve certain functionality
 + Upper bound on clock-cycle time
 - “Soft Constraints”
 + Minimize region
 + Minimize wire-length
 + Minimize congestion, . . .

 + part assembly, . . .
Very General Formalism

- Multi-dimensional Selection Problems
 Given set of variables
 each w/ domain (set of possible values)
 assign a value to each variable that either

 1. satisfies given set of “hard” constraints:
 satisfiability problems
 or

 2. minimizes given cost function, where each assignment to variables has cost:
 optimization problems — “soft constraints”

- In general,
 + different domains for diff var’s
 (discrete, or continuous $X + Y > Z + 3$)
 + different constraints for diff var-tuples
 + constraints over k-tuples of vars ($k > 2$)

- Our focus:
 Any feasible solution, Hard constraints
Prolog Encoding — Australia MC

%%% Domain information
domWA(A) :- color(A).
domNT(B) :- color(B).
domSA(C) :- color(C).
domQ(D) :- color(D).
domNSW(E) :- color(E).
domV(F) :- color(F).
domT(F) :- color(F).

color(r). color(g). color(b). % color(X) :- member(X, [r,g,b]).

%%% Constraint information
cWA_NT(WA,NT) :- diff(WA,NT). cWA_SA(WA,SA) :- diff(WA,SA).
cNT_SA(NT,SA) :- diff(NT,SA). cNT_Q(NT,Q) :- diff(NT,Q).
cSA_Q(SA,Q) :- diff(SA,Q). cSA_NSW(SA,NSW) :- diff(SA,NSW).
cSA_V(SA,V) :- diff(SA,V).
cQ_NSW(Q,NSW) :- diff(Q,NSW). cNSW_V(NSW,V) :- diff(NSW,V).

% diff(A,B) :- A /== B.
diff(r,g). diff(g,r). diff(b,r). diff(r,b). diff(g,b). diff(b,g).

%%% Complete problem
answer([[WA,NT,SA,Q,NSW,V,T]]) :- domWA(WA), domNT(NT), domSA(SA),
domQ(Q), domNSW(NSW), domV(V), domT(T),
cWA_NT(WA,NT), cWA_SA(WA,SA), cNT_SA(NT,SA), cNT_Q(NT,Q), cSA_Q(SA,Q),
cSA_NSW(SA,NSW), cQ_NSW(Q,NSW), cNSW_V(NSW,V), cSA_V(SA,V).

| ? - bagof(X, answer(X), S).
S = [[r,g,b,r,g,r,r], [r,g,b,r,g,r,g], [r,g,b,r,g,r,b], [r,b,g,r,b,r,r],
 [r,b,g,r,b,r|...], [r,b,g,r,b|...], [g,r,b,g|...], [g,r,b|...],
 [g,r|...], [g|...]|...] ? ;
no
| ? -
Prolog Encoding: SEND + MORE = MONEY

%%% Domain information
.domS(S) :- pdigit(X). domE(E) :- digit(E).
domN(N) :- digit(N). domD(D) :- digit(D).
domM(M) :- pdigit(M). domO(O) :- digit(0).
domR(R) :- digit(R). domY(Y) :- digit(Y).
domC1(C1) :- v01(C1). domC2(C2) :- v01(C2).
domC3(C3) :- v01(C3).

digit(X) :- pdigit(X).
digit(0).

 pdigit(1). pdigit(2). pdigit(3). pdigit(4).
v01(0). v01(1).

%%% Constraint information
% each pair is different
 cSE(S,E) :- diff(S,E). cSN(S,N) :- diff(S,N). cSD(S,D) :- diff(S,D).
cSM(S,M) :- diff(S,M). cSO(S,O) :- diff(S,O). cSR(S,R) :- diff(S,R).
cSY(S,Y) :- diff(S,Y).

cEN(E,N) :- diff(E,N). cED(E,D) :- diff(E,D). cEM(E,M) :- diff(E,M).
cEO(E,O) :- diff(E,O). cER(E,R) :- diff(E,R). cEY(E,Y) :- diff(E,Y).

cND(N,D) :- diff(N,D). cNM(N,M) :- diff(N,M). cNO(N,O) :- diff(N,O).
cNR(N,R) :- diff(N,R). cNY(N,Y) :- diff(N,Y).

cDM(D,M) :- diff(D,M). cDO(D,O) :- diff(D,O). cDR(D,R) :- diff(D,R).
cDY(D,Y) :- diff(D,Y).

cMO(M,O) :- diff(M,O). cMR(M,R) :- diff(M,R). cMY(M,Y) :- diff(M,Y).
cOR(O,R) :- diff(O,R). cOY(O,Y) :- diff(O,Y).
cRY(R,Y) :- diff(R,Y).
diff(X, Y) :- X \leq Y.
% or could have all 55 pairs...

% 'addition':
cDEY1(D, E, Y, C1) :- 0 is ((D+E) - (Y + 10*C1)).
cNR1E2(N, R, C1, E, C2) :- 0 is ((N+R+C1) - (E + 10*C2)).
cE02N3(E, 0, C2, N, C3) :- 0 is ((E+0+C2) - (N + 10*C3)).
cSM30M(S, M, C3, 0, M) :- 0 is ((S+M+C3) - (0 + 10*M)).

%%% Total constraint:
ans([S, E, N, D, M, 0, R, Y]) :-
domS(S), domE(E), domN(N), domD(D), domM(M),
dom0(0), domR(R), domY(Y), domC1(C1), domC2(C2), domC3(C3),
cSE(S, E), cSN(S, N), cSD(S, D), cSM(S, M), cSO(S, 0), cSR(S, R), cSY(S, Y),
cEN(E, N), cED(E, D), cEM(E, M), cEO(E, 0), cER(E, R), cEY(E, Y),
cND(N, D), cNM(N, M), cNO(N, 0), cNR(N, R), cNY(N, Y),
cDM(D, M), cDO(D, 0), cDR(D, R), cDY(D, Y),
cMO(M, 0), cMR(M, R), cMY(M, Y),
cOR(O, R), cOY(O, Y),
cRY(R, Y),
cDEY1(D, E, Y, C1), cNR1E2(N, R, C1, E, C2), cE02N3(E, 0, C2, N, C3),
cSM30M(S, M, C3, 0, M).
Complexity of CSP

- Propositional Satisfiability is CSPProblem.
 (Domain of each variable: \{t, f\}
 Each \(k\)-clause allows \(2^k - 1\) assignments, . . .)

\[\Rightarrow\] Every NP-complete problem can be formulated as CSPProblem.

. . . so CSPs are HARD to solve!

- Approaches
 - Seek algorithms that work well on typical cases even though worst case may be exponential
 - Seek special cases w/ efficient algorithms
 - Seek efficient approximation algorithms
 - Develop parallel / distributed algorithms
Search Approach to CSP

- "Grow"
 - **State**: partial assignment
 - Initial state = \{\}
 - **Operators**:
 1. Assign value to *any* unassigned variable
 (Branching Factor: $\sum_i |D_i|$)
 2. Assign value to $k + 1^{st}$ variable
 (Branching Factor: $\max_i |D_i|$)

- "Modify/Repair"
 - **State**: *complete* assignment
 - Initial state: random(?)
 - **Operator**: Change value of some variable

+ ... in all cases:
 - **Goal-test**: all variables assigned,
 all constraints satisfied
 - **PathCost**: 0

Note: Goal test is DECOMPOSED into individual constraints!

If $A \neq B$, then
\(<A = 1, B = 1, \ldots>\) cannot be part of solution...
\Rightarrow can be pruned!
"Modify/Repair" Approach: Exhaustive

Initial State: all variables are assigned

Operators: re-assign new value to variable

Goal test: all constraints are satisfied

- aka *Generate-and-Test Algorithm*

 Sequentially generate entire assignment space
 \[\mathcal{D} = \mathcal{D}_1 \times \mathcal{D}_2 \times \ldots \times \mathcal{D}_n \]

 \[\mathcal{D} = \mathcal{D}_A \times \mathcal{D}_B \times \mathcal{D}_C \times \mathcal{D}_D \times \mathcal{D}_E \]
 \[= \{1, 2, 3, 4\} \times \{1, 2, 3, 4\} \times \ldots \times \{1, 2, 3, 4\} \]
 \[= \{1, 1, 1, 1\} \times \ldots \]
 \[= \{4, 4, 4, 4\} \]

 - Test each assignment against constraints.

 - Generate-and-test is always exponential.

 - ... but see iterative repair techniques...
“Grow” Approach

Initial State: all variables are unassigned

Operators: assign value to any unassigned variable

Goal test: all variables are assigned and all constraints are satisfied

Complexity of the dumb approach

Max. depth of space \(m = n \) (# of variables)

Depth of solution \(d = n \) (all vars assigned)

Search algorithm to use: depth-first

Branching factor \(b = \sum_i |D_i| \) (at top of tree)
Tricks for Grow

\[\text{WA=red} \quad \text{WA=green} \quad \text{WA=blue} \]

\[\begin{array}{c}
\text{WA=red} \\
\text{NT=green} \\
\text{WA=red} \\
\text{NT=green} \\
\text{Q=red} \\
\end{array} \quad \begin{array}{c}
\text{WA=red} \\
\text{NT=blue} \\
\text{WA=red} \\
\text{NT=green} \\
\text{Q=blue} \\
\end{array} \]

Improve dramatically by noting...

- Order of assignment is *irrelevant* so many paths are equivalent
 \[\Rightarrow \text{just consider assignment to variable } X_i \text{ at depth } i \]

- Adding assignments cannot correct a violated constraint
 \[\Rightarrow \text{stop & back-up whenever conflict} \]
Other Tricks — Grow

1. Formulate CSP problem appropriately
 - Node = Variable, vs Node = Constraint

2. Prune domain
 - k-consistency

3. Avoid “Inconsistent” Values
 - Backtracking
 - Forward Checking

4. Best Variable/Value
 - Most-constrained variable first
 - Most-constraining variable first
 - Least-constraining value first
Trick#1a: Appropriate Formulation

- Place 8 queens (on 8×8 board) s.t. no queens attach another
 - $\exists!$ queen per row
 - $\exists!$ queen per column
 - $\exists!$ queen per \nearrow diagonal
 - $\exists!$ queen per \searrow diagonal

- Naive approach: Use 8 variables
 \[Q_i \in \left\{ \langle 1,1 \rangle, \langle 1,2 \rangle, \ldots, \langle 1,8 \rangle, \langle 2,1 \rangle, \langle 2,2 \rangle, \ldots, \langle 2,8 \rangle, \ldots, \langle 8,1 \rangle, \langle 8,2 \rangle, \ldots, \langle 8,8 \rangle \right\} \]

 Constraints:
 \[Q_i \neq Q_j, Q_i.X \neq Q_j.X, Q_i.Y \neq Q_j.Y, \ldots \]

 But... must consider (discard) many silly assgn's
 \[Q_1 = \langle 1,1 \rangle \text{ and } Q_2 = \langle 1,1 \rangle \]
 \[Q_1 = \langle 1,1 \rangle \text{ and } Q_2 = \langle 1,2 \rangle \]
 \[Q_1 = \langle 1,1 \rangle \text{ and } Q_2 = \langle 4,1 \rangle \]

- Better to AVOID “silly” assgn's
 - ★ Only Generate 1 Queen per row
 - ★ Only Generate 1 Queen per column
Reformulation of 8-Queens

• Use 8 variables \(V_1, \ldots, V_8 \),
 where \(V_i \in \{1, \ldots, 8\} \) specifies COLUMN
 for queen on row \(i \) (\(Q_i \))

 (get “\(\exists! \) queen per row” for free)

• For “\(\exists! \) queen per column”:
 Force \(V \) to be PERMUTATION of \(\{1, \ldots 8\} \)

 (So exactly one \(V_i \) is 1, exactly one is 2, \ldots)

So: solution(\(V \)) :- permut([1,2,3,4,5,6,7,8], \(V \)), safe(\(V \)).

 safe(\(V \)) if no diagonal attacks.
8-Queens — Diagonal

- Q_i (queen on row i) attacks Q_j

 if

 $|V_i - V_j| = |i - j|$

- $V = [V1, \ldots, V8]$ is SAFE if

 Q_1 is NOT diag-attacking Q_2, Q_3, \ldots

 Q_2 is NOT diag-attacking Q_3, Q_4, \ldots

 Q_1 is NOT diag-attacking Q_2:

 $V1 - V2 \neq 1, -1$

 (as 1 row away, must not be 1 column away)

 Q_1 is NOT diag-attacking Q_3:

 $V1 - V3 \neq 2, -2$

 (as 2 rows away, must not be 2 columns away)

So: $\text{safe}([V_i | [V_{i+1}, \ldots , V_8]])$

 if

 $V_i - V_{i+1} \neq \pm 1$

 $V_i - V_{i+2} \neq \pm 2$

 $\ldots V_i - V_{i+k} \neq \pm k$

 $\ldots \& \text{ safe}([V_{i+1}, \ldots , V_8])$
Prolog Encoding — 8-Queens

solution(V) :- permut([1,2,3,4,5,6,7,8], V), safe(V).

%%% Define Permutation:
permut([], []).
permut([A|Rest], Perm) :- permut(Rest, Prest), insert(A, Prest, Perm).

insert(A, L, [A|L]).
insert(A, [B|L1], [B|L2]) :- insert(A, L1, L2).

%%% Define Safe:
safe([V]).
%%% when only 1 queen remains, DONE!

%%% Safe if
%%% 1. 1st Queen in list is NOT diag-attacking any in rest of list
%%% 2. Rest of list is safe (recursively)
safe([V | VList]) :-
 nodiag(V, VList, 1),
 safe(VList).

%%% if rest of list is NIL, can’t be any attacks
nodiag(V, [], N).
%%% ... else: see if queen on adjacent row is 1 column away,
%%% then if queen 2 rows aways is 2 columns away, etc.
nodiag(V1, [V2 | List], N) :-
 noattack(V1, V2, N),
 N1 is N+1,
 nodiag(V1, List, N1).

noattack(V1, V2, N) :-
 N =\= V2-V1,
 N =\= V1-V2.
Comments on 8-Queens

- Still very inefficient, as considers FULL permutations, ... even if quickly pruned

Eg: Permutation \([1,2,\ldots]\) cannot work.
 But alg will try \([1,2,3,4,\ldots]\),
 then \([1,2,3,5,\ldots]\),
 \([1,2,3,6,\ldots]\),
 \([1,2,3,7,\ldots]\),
 \([1,2,3,8,\ldots]\),
 \([1,2,4,3,\ldots]\),
 \([1,2,4,5,\ldots]\),
 ...

Better: When selecting position for \(k^{th}\) queen,
just make different from \(V_1,\ldots V_{k-1}\)

- Soon see other ideas: ForwardChecking,
 ...

- \(n\)-queens: need generator ...
 soln(N, S) :- gen(N, NTo1), permut(NTo1, S), safe(S).
Trick#1b: Appropriate Formulation

- **Crossword Puzzle:**
 1. Var = Word (in Row/Column)
 Constraint = single \(\langle i, j \rangle \) entry
 (eg, “3Down” and “5across” must have
 same \(\langle 3, 5 \rangle \) letter: \(C_{3D, 5A} = \{\langle ..., ..., ... \rangle \} \))
 Only BINARY constraints
 2. Var = Letter at \(\langle i, j \rangle \)
 Constraint = consecutive letters in same word
 (eg, \(L_{3,1}, L_{3,2}, L_{3,3} \) all form same word
 \(\langle d, o, g \rangle, \langle c, a, t \rangle, ... \})
 \(k \)-ary constraint, for \(k \)-letter word

- **Exploit functions, ...**
Trick #1b, con’t

• n-ary vs 2-ary constraints
 Can always transform any n-ary CSP to 2-ary
 Typically requires adding new variables...

\[
\begin{array}{ccc}
\alpha & \beta & \gamma \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\]

• $C_{\alpha\beta\gamma} \equiv \alpha \oplus \beta = \gamma$

• New variable: χ

\[
\begin{array}{c|ccc}
\chi & \alpha & \beta & \gamma \\
A & 0 & 0 & 1 \\
B & 0 & 1 & 0 \\
C & 1 & 0 & 0 \\
D & 1 & 1 & 1 \\
\end{array}
\]

\[C_{\chi\alpha} = \{ \langle A, 0 \rangle, \langle B, 0 \rangle, \langle C, 1 \rangle, \langle D, 1 \rangle \} \]
\[C_{\chi\beta} = \{ \langle A, 0 \rangle, \langle B, 1 \rangle, \langle C, 0 \rangle, \langle D, 1 \rangle \} \]
\[C_{\chi\gamma} = \{ \langle A, 1 \rangle, \langle B, 0 \rangle, \langle C, 0 \rangle, \langle D, 1 \rangle \} \]

• Variable \leftrightarrow Constraint
For Trick #2: Scheduling Activities

- **Variables:** A, B, C, D, E
 (starting time of activity)

- **Domains:** $D_i = \{1, 2, 3, 4\}$, for $i = A, B, \ldots, E$

- **Constraints:**

 $(B \neq 3), (C \neq 2), (A \neq B), (B \neq C),$
 $(C < D), (A = D), (E < A), (E < B),$
 $(E < C), (E < D), (B \neq D).$
Prolog Encoding – Schedule

%%% Domain information
domA(A) :- v14(A).
domB(B) :- v14(B).
domC(C) :- v14(C).
domD(D) :- v14(D).
domE(E) :- v14(E).

%%% Constraint information
cB(B) :- B \== 3.
cC(C) :- C \== 2.
cAB(A,B) :- A \== B.
cBC(B,C) :- B \== C.
cCD(C,D) :- C < D.
cAD(A,D) :- A = D.
cAE(A,E) :- E < A.
cBE(B,E) :- E < B.
cCE(C,E) :- E < C.
cDE(D,E) :- E < D.
cBD(B,D) :- B \== D.

%%% Total constraint:
ans([A,B,C,D,E]) :-
 domA(A), domB(B), domC(C),
 domD(D), domE(E),
 cB(B), cC(C), cAB(A,B), cBC(B,C),
 cCD(C,D), cAD(A,D), cAE(A,E), cBE(B,E),
 cCE(C,E), cDE(D,E), cBD(B,D).

% bagof(X, ans(X), S).
% S = [[4,2,3,4,1]] ? ;
Trick#2: Prune domain

2. Consistency: Prune variable’s domain, before selecting value.

• Arc-consistency:

Given binary-constraint $C_{X,Y}$

$\mathcal{D}_X, \mathcal{D}_Y$ are arc consistent (or 2-consistent) if

$$\forall x \in \mathcal{D}_X \ \exists y \in \mathcal{D}_Y \ \text{s.t.} \ \langle x, y \rangle \in C_{X,Y}$$

Eg: $\mathcal{D}_A = \{1, 2, 3, 4\}$ and $\mathcal{D}_E = \{1, 2, 3, 4\}$ are

NOT arc consistent as $A = 1$ is not consistent with $E < A$

\Rightarrow use $\mathcal{D}'_A = \{2, 3, 4\}$ and $\mathcal{D}'_E = \{1, 2, 3\}$
2. **Consistency**: Prune variable’s domain, before selecting value.

- **Given unary-constraint** C_X
 \mathcal{D}_X is **domain consistent** (or 1-consistent) if
 $\forall x \in \mathcal{D}_X, \ x \in C_X$

 Eg: $\mathcal{D}_B = \{1, 2, 3, 4\}$ is NOT domain consistent as $B = 3$ violates constraint $B \neq 3$.

 \Rightarrow use $\mathcal{D}'_B = \{1, 2, 4\}$

- **Given binary-constraint** $C_{X,Y}$
 $\mathcal{D}_X, \mathcal{D}_Y$ are **arc consistent** (or 2-consistent) if
 $\forall x \in \mathcal{D}_X, \exists y \in \mathcal{D}_Y$ s.t. $(x, y) \in C_{X,Y}$

 Eg: $\mathcal{D}_A = \{1, 2, 3, 4\}$ and $\mathcal{D}_E = \{1, 2, 3, 4\}$ are NOT arc consistent as $A = 1$ is not consistent with $E < A$

 \Rightarrow use $\mathcal{D}'_A = \{2, 3, 4\}$ and $\mathcal{D}'_E = \{1, 2, 3\}$

- **Given k-ary–constraint** C_{X_1, \ldots, X_k}
 $\mathcal{D}_{X_1, \ldots, X_k}$ are **k consistent** if
 $\forall x_1 \in \mathcal{D}_{X_1}, \exists x_2, \ldots, x_k \in \mathcal{D}_{X_2}, \mathcal{D}_{X_3}, \ldots, \mathcal{D}_{X_k}$ s.t. $(x_1, x_2, \ldots, x_k) \in C_{X_1, \ldots, X_k}$
Binary Constraints
⇒ Constraint Network

Note: Already removed $B = 3$, $C = 2$.
Special Case: Tree structured CSPs

- Recall for general CSPs:
 worst-case time is $O(|D|^n)$

Theorem: If the constraint graph is tree-structured (has no loops),
Arc-Consistency is sufficient!
 \Rightarrow CSP can be solved in $O(n|D|^2)$ time.

- Also applies to
 logical / probabilistic reasoning

- Important example of relation between
 syntactic restrictions and complexity of reasoning
Algorithm for Tree-Shaped CSP

1. Order nodes breadth-first, starting from any leaf:

 ![Diagram](image)

 - Order: A → B → C → D → E → F

2. For $j = n$ to 1, apply $AC(V_i, V_j)$
 where V_i is parent of V_j

3. For $j = 1$ to n, pick legal value for V_j, given parent value
Trick#3: Avoid “Inconsistent” Values

- **Backtracking:** Only consider \(X_i = v \) if consistent w/ earlier assignments
 \[\langle X_1 = v_1, \ldots, X_{i-1} = v_{i-1} \rangle \]

 Eg: Given \(\langle A = 1 \rangle \), do NOT allow \(B = 1 \), as violates \(A \neq B \).

- **Forward Checking:** If considering \(X_i = v \), remove from \(D_j \) \((j > i)\) any no-longer-possible value

 ...make arc-consistent ...

 If \(\exists j \) s.t. \(D_j \mapsto \{ \} \), disallow \(X_i = v \).

 Eg: Spse \(D_D = \{2, 3, 4\} \) and \(C_{A,D} \equiv “A = D” \)
 - Do NOT consider \(A = 1 \), as violates \(A = D \).
 - After \(A = 2 \), change \(D_D = \{2\} \)

Note: AC is "preprocessing step",
but FC is done “during the computation”

AC will keep propagating (until CSP is arc-consistent)
but FC is just current-var with future vars

(...but FC could continue propagating...)
Illustrating Forward Checking #1

Idea: Keep track of remaining legal values for each unassigned variable

Terminate search when any variable has no legal values

- Simplified map-coloring example:

<table>
<thead>
<tr>
<th></th>
<th>red</th>
<th>blue</th>
<th>green</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can be EXPONENTIAL win:

Given CSP on \(\{X_1, X_2, \ldots, X_n\} \)
Spse \(\{X_1, X_2, X_n\} \) all \(\{1, 2\} \),
\(C_{1,2,n} \equiv "x_1 \neq x_2, x_1 \neq x_n, x_2 \neq x_n" \)
Trick #4: Best Variable/Value

- Earlier: removing impossible situations.

 Other decisions:

4. **Most-constrained variable first:**
 Select unassigned variable with smallest domain
 (dynamic: after each pruning w/ forward checking, . . .)

 Eg: If $|D_E| = 2$ and $|D_i| \geq 3$ for other i, select E

5. **Most-constraining variable first:**
 Select unassigned variable that appears in most
 constraints w/ other unassigned variables

 Let $f(X) = |\{Y : Y$ unassigned, $\exists C \ldots X \ldots Y\}|$
 Select $X^* = \arg\min_X\{|f(X) : X$ unassigned $\}$

 Eg: Start with B, as $f(B) = 4 \geq f(X)$ $\forall X$, . . .

6. **Least-constraining value first:**
 Choose value for X that leaves the most values
 for OTHER unassigned variables
Example of Heuristics

Most Constrained Variable:
- E has only 1 legal value (Blue);
- C has 2, F has 2, D has 3
- \Rightarrow pick E

Most Constraining Variable:
- C "is constrained by" E, F
- E "is constrained by" C, F
- F "is constrained by" C, F, D
- D "is constrained by" F
- \Rightarrow pick F

Least Constraining Value:
- Q: What color for C?
 - Both Blue and Red are legal.
- A: Red leaves most option for E...
How Effective are Heuristics?

Consider n-queens:

- with ForwardChecking: $n = 30$
- Most-Constrained-Variable: $n = 100$
- Least-Constrained-Value: $n = 1000$

- Dramatic recent progress in Constraint Satisfaction

- ...can now handle problems
 - with 10,000 to 100,000 variables
 - up to 1,000,000 constraints!

(see p.105 R&N)
Hard CSPs

- Suppose all constraints UNARY (explicit)

 ⇒ Trivial to solve
 1,000,000,000 variable system
 w/ 10,000,000,000 (such) constraints!

 But...

- Job-Shop Scheduling:
 10 jobs on 10 machines

- Proposed [Fisher/Tompson: 1963]

- Solved [Carlier/Pinson: 1990]

- Open: 15 jobs on 15 machines
 Constraint Optimization Problem

- So far... SATISFACTION
 What about OPTIMIZATION?

- Want to minimize \begin{cases}
 \# \text{ of rooms required} \\
 \# \text{ chip size} \\
 \# \text{ time for delivery}
\end{cases}

- Obvious approach:

 Set $try_time = t_{max}$
 Set $best_time = \text{"None"}$
 Repeat
 Add constraint \text{Time} < try_time to existing constraints
 Try to find satisfying solution.
 If satisfied,
 Set $best_time = try_time$
 Set $try_time = try_time - 1$
 Else Return($best_time$)
Comments

• Why not Mathematical Programming Problem?
 – CSP rep’n more natural/expressive
 + variables ≈ problem entities
 + constraints ≈ natural description
 (not just linear inequalities)
 ⇒ Formulation simpler, solution easier to un-
 derstand, easier to find good heuristics
 – CSP algorithms often find sol’n faster

• ∃ ConstraintProblemSolving tools/systems
 + CHIP (“Constraint Handling in Prolog”)
 + PrologIII
 + Solver (from ILOG)

• Tools use general, “weak” methods
 If have background knowledge: use it!

 Symmetries

 Clearly T is even in…

 \[
 \begin{array}{c}
 \text{G E R A L D} \\
 \hline
 \text{DONALD} \\
 \text{ROBERT}
 \end{array}
 \]

• Other tricks (backjumping, dynamic . . .)
 + theoretical analyses

• Auxilary paper on course web-page
How to use PROLOG FDS to solve Constraint Problems?

0. Load “Sicstus Prolog’s Finite Domain Solver”
 :- use_module(library(clpfd)).

1. Declare domains
 domain([X,Y], 1,4)
 variables X, Y have domain \{1,2,3,4\}
 domain([Z], 3,5)
 variable Z has domain \{3,4,5\}
 domain values = consecutive integers

2. specify constraints
 A #> 3
 A #< B
 N #= C0 + C1*N1 + C2*N2*N2
 noLabeling(N,L) :- L = [A,B,C],
 domain([A,B,C],1,N), A #> B, B #> C.

3. Prolog assigns domain values to variables, 1-by-1, until finding satisfying ass’t
 | ?- noLabeling(4,L).
 L = [A,B,C],
 _A in 3..4,
 _B in 2..3,
 _C in 1..2 ?
Word Problem: Which Bottle?

To leave a maze, need to select/drink bottle one of 7 bottles, in left to right line...

1 Danger lies before you, while safety lies behind,
2 Two of us will help you, whichever you would find,
3 One among us seven will let you move ahead,
4 Another will transport the drinker back instead,
5 Two among our number hold only nettle wine,
6 Three of us are killers, waiting hidden in line.
7 Choose, unless you wish to stay here forevermore,
8 To help you in your choice, we give your these clues four:
9 First, however slyly the poison tries to hide
10 You will always find some on nettle wines left side;
11 Second, different are those who stand at either end,
12 But if you would move onwards, neither is your friend;
13 Third, as you see clearly, all are different size,
14 Neither dwarf nor giant holds death in their insides;
15 Fourth, the second left and the second on the right
16 Are twins once you taste them, though different at first sight.
Prolog Encoding #2: SEND + MORE = MONEY

sum(N1, N2, N) :- sum1(N1, N2, N, 0, 0, % carries from right, and to left [0,1,2,3,4,5,6,7,8,9], _).

sum1([], [], [], 0, 0, Digits, Digits).

% sequentially find values of digits...
sum1([D1|N1], [D2|N2], [D|N], C1, C, Dig1, Digs) :-
 sum1(N1, N2, N, C1, C2, Dig1, Digs2),
 digitsum(D1, D2, C2, D, C, Digs2, Digs).

digitsum(D1, D2, C1, D, C, Digs1, Digs) :-
 del(D1, Digs1, Digs2),
 del(D2, Digs2, Digs3),
 del(D, Digs3, Digs),
 S = D1 + D2 + C1,
 D is S mod 10,
 C is S // 10.

%% If ‘‘A’’ is assigned, do nothing.
%% Else, set A to an element in L,

del(A, L, L) :- nonvar(A). % A already instantiated

del(A, [A|L], L). % delete the head

del(A, [B|L], [B|L1]) :- del(A, L, L1).