CMPT325: Issues in Functional Programming

B. Price & R. Greiner

23rd September 2004
Variables and Efficiency

- Variables are symbolic labels used to refer to data values
 - provided by the programmer, or
 - calculated from functions of data

- Variables allow us to refer to the same data multiple times

- Variables can improve efficiency - consider:
 \[Y := F(x) \times F(x) \quad \text{vs.} \quad Z := F(x) \]
 \[Y := Z \times Z \]
 First example computes \(F(x) \) twice; Second example only once

- Optimizing compilers can often detect simple redundancies, but it is important to be aware of the general principle
How would we optimize the following code in Lisp:

```
(APPEND (foo x) (foo x))
```

Solution 1:

```
((LAMBDA (z)
    (APPEND z z)
  ) (foo x))
```

Alternatively, equivalently and more transparently

```
(LET ((z (foo x)))
  (APPEND z z))
```
Using Functions Efficiently

- Consider the append predicate (see last lecture)

```lisp
(DEFUN append (list1 list2)
  (COND ((NULL list1) list2 )
        ( T (CONS (CAR list1)
                   (append (CDR list1) list2))))
)
```
Analysis of Append

- **What is runTime**(*append*)?
 (Hint: examine reduction operator)

<table>
<thead>
<tr>
<th>(length L1)</th>
<th>(length L2)</th>
<th>#Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>11</td>
</tr>
</tbody>
</table>

- Running time of *append* is LINEAR in length of 1st arg
 \(\text{runTime(Append)} = O(\text{length}(L1)) \)

- Implication: always call with short list in first position
Efficiency Tricks

- First analysis of recursive structure may not yield an efficient solution
- Additional examination of the recursion can lead to significant improvements
Naive reverse implementation

(reverse '()) → ()
(reverse '(A)) → (A) ;; (APPEND '() '(A))
(reverse '(B A)) → (A B) ;; (APPEND '(A) '(B))
(reverse '(C B A)) → (A B C) ;; (APPEND '(A B) '(C))

▶ Analysis

▶ Base case? '(()) → ()
▶ Reduction? (CDR l1)
▶ Composition? (APPEND reduced-problem (LIST (CAR l1)))

▶ Solution based on this analysis (DO NOT IMPLEMENT!):

(DEFUN reverse-1 (l1)
 (COND ((NULL list) nil)
 (t (APPEND (reverse-1 (CDR l1))
 (LIST (CAR l1)))))
Trace of Naive reverse-1 I

- The reverse-1 method starts by successively reducing the problem to the base case

(reverse-1 '(a b c d))
Enter reverse-1 (a b c d)
Enter reverse-1 (b c d)
Enter reverse-1 (c d)
Enter reverse-1 (d)
Enter reverse-1 nil

- As recursion unwinds, append is called at each step

Exit reverse-1 ()
Enter append () (d)
Trace of Naive reverse-1 II

Exit append (d)
Exit my-reverse-1 (d)
Enter append (d) (c)
Exit append (d c)
Exit my-reverse-1 (d c)
Enter append (d c) (b)
Exit append (d c b)
Exit my-reverse-1 (d c b)
Enter append (d c b) (a)
Exit append (d c b a)
Exit my-reverse-1 (d c b a)
Complexity of Naive reverse-1

(DEFUN reverse-1 (l1)
 (COND ((NULL l1) nil)
 (t (APPEND (reverse-1 (CDR l1))
 (LIST (CAR l1))))))

- Each time reverse-1 completes, APPEND is called
- APPEND traverses the entire singly-linked list
 runtime(append) = O(n)
- runtime(reverse-1) = n+(n−1)+⋯+1 = \(\frac{n(n+1)}{2}\) = O(n^2)
LIST as STACK and Accumulators II

- Note: CONS operator is like a stack push and CAR is like stack pop

```
(SETF STK nil)
STK → ()
(SETF STK (CONS 'A STK))
STK → (A)
(SETF STK (CONS 'B STK))
STK → (B A)
(SETF STK (CONS 'C STK))
STK → (C B A)
```
LIST as STACK and Accumulators II

We push items into a lambda parameter named stk

```lisp
(defun load-stack (items stk)
  (cond ((null items) stk)
        (t (load-stack (cdr items) (cons (car items) stk)))))
```

Don’t return composed result, pass it forward

Stk is an accumulator variable returned on last call
Collector Variables or Accumulators

- Collector variable = extra argument in function that represents calculation so far

- When function is done
 (typically by exhausting another argument)
 it simply returns collector variable as value of function.

- Here: composition operator is identity function
 (it simply returns the result)
Using load-stack for my-reverse

- Using "helper function" load-stack to implement my-reverse

 (DEFUN my-reverse (l1)
 (load-stack l1 nil))

- Internal definition of "helper function"

 (DEFUN my-reverse (l1)
 (LABELS (load-stack (items stk)
 (IF (NULL items)
 stk
 (load-stack (CDR items)
 (CONS (CAR items) stk)))))
 (load-stack l1 nil)))

- This version is $O(n)$!
Trace of efficient my-reverse

1 Enter my-reverse (a b c d)
1 Enter load-stack (a b c d) nil
2 Enter load-stack (b c d) (a)
 3 Enter load-stack (c d) (b a)
 4 Enter load-stack (d) (c b a)
 5 Enter load-stack nil (d c b a)
 5 Exit load-stack (d c b a)
 4 Exit load-stack (d c b a)
 3 Exit load-stack (d c b a)
 2 Exit load-stack (d c b a)
 1 Exit load-stack (d c b a)
 1 Exit my-reverse (d c b a)

▶ Note: this implementation is tail-recursive
Efficiency in General

- Q: Is \langle fn_1 \rangle more efficient than \langle fn_2 \rangle? wrt expected Run Time Cost for LARGE problems

- Defined in terms of
 # of Function Applications as a function of “Size” of Argument(s)

- “Size”
 Usually Asymptotic
 “... for sufficiently large lists...” wrt LISP: Usually “length of list”
Efficiency Classes I

- “Constant Order” $O(1)$
 # of Function Applications is INDEPENDENT of args
 ... No recursion
 [Eg, (LAMBDA (x) (CAR (CDR x)))]

- “Linear Order” $O(n)$
 (n is size of argument)
 Recursive calls \propto length of list but CONSTANT work on each call

 (e.g., APPEND ...(CONS (CAR x) (APPEND (CDR x) y))...)
Efficiency Classes II

- “Polynomial Order” $O(n^2), O(n^5), \ldots$
 Recursion on length of list, with Linear (poly) work at each level
 - (e.g. naive reverse-1 does an append after each call, so $O(n^2)$)

- “Exponential Order” $O(2^n), O(n^n), \ldots$
 More than 1 recursive call for each call
 - (e.g. naive fibonacci calls self TWICE at each step – stay tuned!)
Linear-time Power Function Analysis

(power n 0) → 1
(power n 1) → n
(power n 2) → n^2 = n*n
(power n 3) → n^3 = n*n*n
(power n 4) → n^4 = n*n*n*n

Analysis

1. Base case? (power n 0) → 1
2. Reduction? (n 1)
3. Composition? (* n (power (- e 1)))
Linear-time Power Function Analysis

(DEFUN my-power-2 (n e)
 (IF (= e 0)
 1
 (* n (my-power-2 n (- e 1))))

• my-power-2 will be called e times, so it is linear in e: $O(e)$
Logarithmic-time Power Function Analysis

\[(\text{power } n \ 0) \rightarrow 1\]
\[(\text{power } n \ 1) \rightarrow n\]
\[(\text{power } n \ 2) \rightarrow n^2 = n \times n = n \times n\]
\[(\text{power } n \ 3) \rightarrow n^3 = n \times n \times n = n^2 \times n\]
\[(\text{power } n \ 4) \rightarrow n^4 = n \times n \times n \times n = n^2 \times n^2\]
\[(\text{power } n \ 5) \rightarrow n^5 = n \times n \times n \times n \times n = n^2 \times n^2 \times n\]

\vdots

- **Analysis**

1. **Base case?** \((\text{power } n \ 0) \rightarrow 1\)
2. **Reduction?** If \(e\) odd: \((- \ e \ 1)\)
 If \(e\) even: \(\div \ e \ 2)\)
3. **Composition?**
 If \(e\) odd: \((\ast \ n \ (\text{power } (- \ e \ 1))\)
 If \(e\) even: \((\ast \ (\text{power } (\div \ e \ 2)) \ (\text{power } (\div \ e \ 2))\)\)
Logarithmic-time Power Function Code

Analysis

1. Base case? (power n 0) \rightarrow 1
2. Reduction? Odd e:(- e 1); Even e: e/2
3. Composition? [see below]

\[
(\text{DEFUN my-power (n e)}
(\text{COND}
 (\text{=} e 0) 1
 (\text{EVENP e)} (\text{LET ((result (my-power n (/ e 2)))))}
 (* result result))
 (t (* n (my-power n (- e 1)))))
\]

Note: two distinct cases for recursive calls
Fibonacci Function Case Study

\[
\begin{align*}
\text{fib}(1) & \rightarrow 1 \\
\text{fib}(2) & \rightarrow 1 \\
\text{fib}(3) & \rightarrow 2 \\
\text{fib}(4) & \rightarrow 3 \\
\text{fib}(5) & \rightarrow 5 \\
\text{fib}(6) & \rightarrow 8 \\
\text{fib}(7) & \rightarrow 13 \quad ; \quad 13 = 5 + 8
\end{align*}
\]

- **Analysis**
 1. Base case? \(\text{fib}(1) \rightarrow 1, \text{fib}(2) \rightarrow 1 \)
 2. Reduction? \((- n \ 1) (- n \ 2)\)
 3. Composition?
 \((+ (\text{fib} (- n \ 1)) (\text{fib} (- n \ 2)))\)
Naive Fibonacci

▶ Analysis

1. Base case? $\text{fib}(1) \rightarrow 1$, $\text{fib}(2) \rightarrow 1$
2. Reduction? $(- n 1) (- n 2)$
3. Composition? $+(\text{fib} (- n 1)) (\text{fib} (- n 2))$

▶ A naive implementation (DO NOT IMPLEMENT)

(DEFUN fib1 (n)
 (COND ((< n 3) 1)
 (t (+ (fib1 (- n 1)) (fib1 (- n 2))))))
Partial Trace of Naive Fibonacci

ENTER fib1 6 ;; Each call \rightarrow 2 subcalls
ENTER fib1 5 ;; runtime(fib $-$ 1) = $O(2^n)$
ENTER fib1 4
ENTER fib1 3
ENTER fib1 2 \rightarrow 1
ENTER fib1 1 \rightarrow 1
ENTER fib1 2
ENTER fib1 3
ENTER fib1 2 \rightarrow 1
ENTER fib1 1 \rightarrow 1
ENTER fib1 4
ENTER fib1 3
ENTER fib1 2 \rightarrow 1
ENTER fib1 1 \rightarrow 1
ENTER fib1 2 \rightarrow 1
Linear Fibonacci

- Naive fib-1 generates 2 branches at (essentially) each call
- Build up answer from bottom forwards, using accumulators and stop when we have computed \(n \) terms

- \(n \) is \# desired terms, \(I \) is a counter, \(\text{fib}_I \) is \(i^{th} \) Fibonacci term, \(\text{fibPrev} \) is \(i - 1 \)st Fibonacci term

\[
(\text{DEFUN fib2 (n)}
\begin{align*}
&\quad (\text{LABELS ((fibHelp (n I fibI fibPrev))}) \\
&\quad \quad (\text{IF (EQ n I}) \\
&\quad \quad \quad \quad \text{FibI} \\
&\quad \quad \quad \quad (\text{fibHelp n (+ I 1) (+ fibI fibPrev) fibI})) \\
&\quad \quad (\text{fibHelp n 1 1 0}))
\end{align*}
)\]
Trace of Linear Fibonacci

ENTER: (FIB2 6)
 ENTER: (FIBHELP 6 1 1 0)
 ENTER: (FIBHELP 6 2 1 1)
 ENTER: (FIBHELP 6 3 2 1)
 ENTER: (FIBHELP 6 4 3 2)
 ENTER: (FIBHELP 6 5 5 3)
 ENTER: (FIBHELP 6 6 8 5)
 ENTER: FIBHELP ==> 8
 ENTER: FIBHELP ==> 8
 ...
 ENTER: FIBHELP ==> 8
 ENTER: FIB2 ==> 8

- tail-recursive structure permits compiler optimization to linear loop
Sublinear Fibonacci I

Define \textbf{fib}(n) to return vector \[
\begin{pmatrix}
 f_n \\
 f_{n-1}
\end{pmatrix}
\]

Base case: \textbf{fib}(2) = \[
\begin{pmatrix}
 f_2 \\
 f_1
\end{pmatrix}
= \begin{pmatrix}
 1 \\
 1
\end{pmatrix}
\]

Recursion:

\[
\textbf{fib}(n) = \begin{pmatrix}
 f_n \\
 f_{n-1}
\end{pmatrix} = \begin{pmatrix}
 f_{n-1} + f_{n-2} \\
 f_{n-1}
\end{pmatrix} = \begin{pmatrix}
 1 & 1 \\
 1 & 0
\end{pmatrix} \begin{pmatrix}
 f_{n-1} \\
 f_{n-2}
\end{pmatrix}
\]

Still \textit{linear} recursion
Sublinear Fibonacci II

- Sequence of recursive calls has its own shared substructure

\[
\text{fib}(n) = \begin{pmatrix} f_n \\ f_{n-1} \end{pmatrix} = \begin{pmatrix} f_{n-1} + f_{n-2} \\ f_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f_{n-1} \\ f_{n-2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f_{n-2} \\ f_{n-3} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^2 \begin{pmatrix} f_{n-2} \\ f_{n-3} \end{pmatrix}
\]
Sublinear Fibonacci III

- On repeated substitution all the way down to the base case:

\[
\begin{pmatrix}
 f_n \\
 f_{n-1}
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} f_2 \\
 f_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-2} \begin{pmatrix} 1 \\
 1 \end{pmatrix}
\]

- Examples:

\[
\begin{pmatrix}
 f_2 \\
 f_1
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^0 \begin{pmatrix} 1 \\
 1 \end{pmatrix} = \begin{pmatrix} 1 \\
 1 \end{pmatrix},
\]

\[
\begin{pmatrix}
 f_3 \\
 f_1
\end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^1 \begin{pmatrix} 1 \\
 1 \end{pmatrix} = \begin{pmatrix} 2 \\
 1 \end{pmatrix}
\]
Sublinear Fibonacci IV

- Showed (power n e) has time logarithmic in exponent
- Substituting matrix multiplication for '*' implements matrix power
- Showed Fibonacci can be reduced to matrix exponentiation
- Fibonacci can therefore be computed in logarithmic time
Scope of Variables

- Consider function bindings of variables in ⟨form⟩ given:

\[
(LAMBDA (y z) \langle form \rangle)
\]
 - \(y\) refers to 1\(^{st}\) arg
 - \(z\) refers to 2\(^{nd}\) arg

- Consider nested functions

\[
(LAMBDA (y z)
 (LAMBDA (x v) \langle form \rangle)
 (CDR y) 'A))
\]

Variables usable within ⟨form⟩:
 - \(x\) is bound to \(\text{CDR}\) of 1\(^{st}\) arg
 - \(v\) is bound to value \(A\)
 - \(y\) is bound to 1\(^{st}\) arg
 - \(z\) is bound to 2\(^{nd}\) arg
Variables

\[
\text{(LAMBDA (y z)} \quad (\text{(LAMBDA (x y) (LIST x y z)}) \ 'A (CDR y)))
\]

▶ is a function that takes 2 args, and evaluates to 3 element list:
\[
\text{(A (CDR of 1}^{st} \text{ arg) (2}^{nd} \text{ arg))}
\]

▶ Notation: In inner \(\lambda \)-expr

▶ Variable \(x \) and \(y \) are BOUND
▶ Variable \(z \) is FREE
▶ \(y \)'s value is “shadowed” by \(\text{(CDR y)} \)
Dealing with Free Variables

▶ Def’n: *Formal* variables of a function are **bound** within the function definition.

▶ All other variables are **free**.

▶ Consider function

\[
\text{(DEFUN \textit{foo} (z x) (LIST z x y))}
\]

▶ When \((\text{foo} \ 5 \ t)\) is called

▶ \(z \rightarrow 5\), bound

▶ \(x \rightarrow t\), bound

▶ \(y\) will be **FREE**

▶ Is \((\text{foo} \langle f1 \rangle \langle f2 \rangle)\) always defined? No
Evaluating foo

▶ Case 1: ((LAMBDA (x y) (foo 'A (CDR x))) '(5) t)

Eval: "(foo 'A (CDR x))" with x ← (5), y ← t
 Eval: "(LIST z x y)" with z ← A, x ← (), y ← t
 Returns: (A () t)

▶ Case 2: ((LAMBDA (x) (foo 'A (CDR x))) '(5))

Eval: (foo 'A (CDR x)) with x ← (5)
 Eval: (LIST z x y) with z←A, x←(), y undefined
 Undefined!!
Scope: Dynamic vs Static

- **Dynamic Scoping:**
 Value of variable depends on RUN-time situation!
 EG: *Lisp*

- **Static Scoping:**
 Value of variable determined by COMPILE-time declaration.
 EG: *Pascal, Turing*, . . .

- **Examples** . . .
Example of Static Scoping

```
Example of Static Scoping

Foo
  \[x \leftarrow 5\]

  Bar
    \[\ldots x \ldots\]
    \[
    \text{put } x; \quad \{ \text{value is "5"} \}\]

Glob
  \[x \leftarrow 7\]

  \[
  \ldots \text{Bar()} \ldots \quad \{ \text{prints 5} \}\]
  \[
  \text{put } x; \quad \{ \text{prints 7} \}\]
```
Example of Dynamic Scoping

\[
\begin{align*}
(\text{SETQ } x & 20) \rightarrow 20 \\
(\text{SETQ } y & 10) \rightarrow 10 \\
(\text{DEFUN } \text{plusy} (x) (+ x y)) & \rightarrow \text{plusy} ;;; y \text{ is free} \\
(\text{plusy } 5) & \rightarrow 15 \\
(+ x y) & \rightarrow 30 \\
(\text{SETQ } y & 20) \rightarrow 20 \\
(\text{plusy } 5) & \rightarrow 25
\end{align*}
\]
Contexts

- Identify each variable with a (LIFO) STACK of values.

- Variable’s current “value” is top of stack

- Initializing/Updating Variable’s Stack
 - Initially, each variable’s stack is [undefined]
 - If (SETQ a v), reset top of a’s stack to (value of) v.
 - When entering function fn with args a_1, . . . , a_n bound to values v_1, . . . , v_n
 PUSH the value of v_i onto a_i’s stack for each i
 - When exiting function, POP stack of each of function’s variables
Maintaining Contexts

Evaluate:

\[
\left(\left(\text{LAMBDA} \ (x \ y) \right) \ \left(\left(\text{LAMBDA} \ (z \ x) \ (\text{LIST} \ z \ x \ y) \right) \ \right) \ \text{'}a \ (\text{CDR} \ x) \ \right) \ \text{'}\left((A \ B \ C) \ (D \ E \ F) \right)
\]

with \(x \leftarrow [] \), \(y \leftarrow [] \), \(z \leftarrow [] \)

ENTER \(\lambda_1 (x \ y) \) with \(x \leftarrow [(A \ B \ C)] \), \(y \leftarrow [(D \ E \ F)] \), \(z \leftarrow [] \)

ENTER \(\lambda_2 (z \ x) \) with \(x \leftarrow [(B \ C)(A \ B \ C)] \), \(y \leftarrow [(D \ E \ F)] \), \(z \leftarrow [A] \)

EXIT \(\lambda_2 \) with \((A \ (B \ C) \ (D \ E \ F)) \)

EXIT \(\lambda_1 \) \((A \ (B \ C) \ (D \ E \ F)) \)
Examples of Tracing

(DEFUN foo (x y) (APPEND x (bar y)))
(DEFUN bar (p) (IF (NULL p) x (foo y (CDR p)))))

Evaluate (FOO '(A) '(B C))

enter FOO \{ X←(A), Y←(B C) \}
enter BAR \{ P←(B C) \}
enter FOO \{ X←(B C), Y←(C) \}
enter BAR \{ P←(C) \}
enter FOO \{ X←(C), Y←() \}
enter BAR \{ P ←() \}
return (C)
return (C C)
return (C C)
return (B C C C)
return (B C C C)
return (A B C C C)
Functional Arguments – Revisited

- Can take a function as argument
 treat it as an s-expr
 “apply” it

- Dynamic vs Static Scoping
 QUOTE vs FUNCTION
Successor Function

'1+' generates the numeric successor of its argument

(1+ 0) → 1
(1+ 1) → 2
(1+ 1.5) → 2.5
(1+ (sqrt 2)) → 2.41421374
(1+ (/ 3 9)) → 4/3
Mapping Function: plus1

- Applies a function to each element of list.

- Eg 1: Add 1 to each element:

 (DEFUN plus1 (list)
 (IF (NULL list)
 nil
 (CONS (1+ (CAR list))
 (plus1 (CDR list))))
 (plus1 (list 3 -10 (sqrt 2) (/ 4 7)))
 → (4 -9 2.4142137 11/7)
Mapping Function: carAll

Eg 2: Take CAR of each element:

(DEFUN carAll (list)
 (IF (NULL list)
 nil
 (CONS (CAR (CAR list))
 (carAll (CDR list))))))
(CarAll '((A B) (C D E) (t) (5 A)))
→(A C t 5)
Mapping Function – MAPCAR

- Each mapping function has
 - a recursive loop over list elements
 - applying some specific function to each element

- Use higher-order function to define common parts!

- Pass in list and function to apply

 (DEFUN MAPCAR (list fn)
 (IF (NULL list)
 nil
 (CONS (funcall fn (CAR list))
 (MAPCAR (CDR list) fn))))

- MAPCAR is built into Common Lisp
MAPCAR Examples

\[(\text{MAPCAR } '(3\ 5\ 0)\ '1+) \rightarrow (4\ 6\ 1)\]
\[(\text{MAPCAR } '(4\ (t\ Q))\ '\text{CAR}) \rightarrow (4\ t)\]
\[(\text{MAPCAR } '(4\ (t\ Q))\ '\text{CDR}) \rightarrow (()\ (Q))\]
\[(\text{MAPCAR } '(4\ (t))\ '\text{LISTP}) \rightarrow (T\ T)\]
\[(\text{MAPCAR } '(A\ B\ (C\ D))\ '\text{ATOM}) \rightarrow (T\ T\ \text{nil})\]
\[(\text{MAPCAR } ()\ '\text{ATOM}) \rightarrow ()\]
\[(\text{MAPCAR } '(A\ B\ C)\ '(\text{LAMBDA}\ (x)\ (\text{CONS}\ x\ '(t)))) \rightarrow\]
\[\ (A\ t)\ (B\ t)\ (C\ t)\]
Mapping Function – AnyOf

- True if any element of list \(x \) satisfies the predicate function \(fn \)

 \(\text{(Note carefully: list argument is named } x) \)

\[
\text{(DEFUN AnyOf (fn x)} \\
\quad \text{(COND ((NULL x) nil)} \\
\quad \quad ((\text{funcall fn (CAR x)) t)} \\
\quad \quad \quad \quad \quad \quad (\text{t (AnyOf fn (CDR x))}}))
\]

- An alternative definition emphasizing readability (might lose tail-recursion)

\[
\text{(DEFUN AnyOf-2 (fn list)} \\
\quad \text{(AND (NOT (NULL list))} \\
\quad \quad \text{(OR (funcall fn (FIRST list))} \\
\quad \quad \quad \quad \quad \quad \text{(AnyOf-2 fn (REST list)))))}
\]
AnyOf Examples

(AnyOf 'ATOM '(A B (C D))) → t
(AnyOf 'ATOM '(((4) (t Q))))→ nil
(AnyOf 'LISTP '(((4) (t Q))))→ t
(AnyOf 'CAR '(((4) (t))))→ t
(AnyOf 'CDR '(((4) (t))))→ nil
(AnyOf 'ATOM ()) → nil
(AnyOf '(LAMBDA (y) (EQ y 'A)) '(B A C)))→ t
Mapping Functions

- Apply function to each [element | sublist] of list, returning list of values.

 MapCar applies function to each element of list, returning list of values.

 MapList — like MAPCAR, but uses successive SUBLISTS (not elements)

 MapCan, MapCon ... destructive (Not PURE lisp)

- Apply function to each [element | sublist] of list, returning nil.
 (used for side effect – eg printing values. Not PURE lisp)

 MapC — like MapCar, but returns nil

 MapL — like MapList, but returns nil

- “Boolean” Functions (not in Common Lisp)

 ANYOF determines if any element satisfies predicate.

 ALLOF determines if all elements satisfy predicate.
Function Argument Problem

- Using functions with free variables can cause problems

- We might expect `memq` to return `t` if `at` is in `list`

 (DEFUN memq (at list)
 (AnyOf '(LAMBDA (i) (EQ i at)) list))

- Not necessarily true:

- Note: `at` is inside a quoted expression
 → it is not scoped in the context of `defun memq`

- Therefore `at` is a *Free Variable* within inner λ-expr.
MEMQ with DYNAMIC Scoping

- In a Lisp with dynamic scoping (e.g. Franz lisp but not Common Lisp), variables are resolved by checking bindings upwards along the stack.

 `(DEFUN memq (at l)
 (AnyOf '(LAMBDA (i) (EQ i at)) l))`

- The `at` in the `λ` is unbound within the `λ`.

- But, `memq` calls `AnyOf` which calls `λ`.

 `(DEFUN AnyOf (fn x)
 (COND ((NULL x) nil)
 ((funcall fn (CAR x)) t)
 (t (AnyOf fn (CDR x)))))`

- The `at` binding created by `memq` will resolve `at` in `λ`.
Tracing MEMQ with DYNAMIC Scoping

(memq 'a '(b a c))
Enter memq {at←a, l←(b a c)}
Enter AnyOf {fn←(LAMBDA (i) (EQ i at))
 x←(b a c) }
Enter λ(fn) {i← b}
EVAL (EQ i at) {i←b, at←a} ↞ nil

- Here, at is resolved against the binding made further up the stack ... so computation continues normally
MEMQ with DYNAMIC Scoping II

- Now rename at to x, but the x in λ is still free

 (DEFUN memq (x i)
 (AnyOf '(LAMBDA(i) (EQ i x)) i))

- Recall AnyOf uses parameter x as well

 (DEFUN AnyOf (fn x)
 (COND ((NULL x) nil)
 ((funcall fn (CAR x)) t)
 (t (AnyOf fn (CDR x))))

- Again: memq calls AnyOf which calls λ

- Here, AnyOf has left closest binding to λ of x on the stack
Tracing `memq` with Dynamic Scoping II

\[(\text{memq 'a '(b a c)})\]

Enter `memq \{x←a, l←(b a c)\}`

Enter `AnyOf \{fn←(LAMBDA (i) (EQ i x)), x←(b a c) \}`

Enter `\lambda \{ i←b \}`

`EVAL (EQ i x) \{i←b,x←(b a c)\}`

\(\Rightarrow\) ERROR, as `x` is `(b a c)`

- The `\lambda` retrieves closest `x` on the stack, which is bound by `AnyOf`

- The `\lambda` requires `x` to be a executable expression: error!
FunArg Problem

- If Dynamic Scoping,

```
(LAMBDA (at L) (AnyOf L '(LAMBDA (i) (EQ i at)) ))
(LAMBDA (x L) (AnyOf L '(LAMBDA (i) (EQ i x )) ))
```
can have completely different results, as \(x \) and \(at \) are free within \(\lambda \)

- Want \(x \) evaluated \textit{statically} (based on program definition)
 Not \textit{dynamically} (based on run-time environ.)

- Older \textit{Lisp}'s usually evaluates free variables \textit{dynamically}.

- To get \textit{static} evaluation use new special form: \texttt{FUNCTION}
MEMQ *without* DYNAMIC Scoping

- Dynamic scoping can introduce subtle and hard-to-find errors
- In Lisp’s without dynamic scoping (e.g., Modern Common Lisp), the \(x \) in quoted \(\lambda \) is still unbound

\[
\text{(DEFUN memq (x l) }
\begin{align*}
\text{ (AnyOf '(LAMBDA(i) (EQ i x)) l))}
\end{align*}
\]

- Without dynamic scoping, \(x \) cannot be resolved on the stack
Tracing \texttt{memq} without Dynamic Scoping

\begin{verbatim}
(memq 'a '(b a c))
Enter memq \{x←a, l←(b a c)}
Enter AnyOf \{fn←(LAMBDA (i) (EQ i x)),
 x←(b a c) \}
Enter \lambda \{ i←b \}
EVAL (EQ i x) \{i←b,x←(b a c)\}
\sim\text{ERROR, as } x \text{ undefined!}
\end{verbatim}

\begin{itemize}
 \item x cannot be resolved
\end{itemize}
QUOTE is for Dynamic Scoping

- Dynamic Scoping: free variables isolated by quote

\[
\text{(DEFUN memq1 (x l)} \rightarrow \text{(AnyOf (QUOTE (LAMBDA (i) (EQ i x))) l))}
\]

- In Lisps that support dynamic scoping, free variables are evaluated DYNAMICALLY

- Hence: value of \(x \) in \(\text{memq1} \)'s is value of \(\text{AnyOf} \)'s 2\(^{nd} \) arg.

\[
(QUOTE \text{(LAMBDA (i) (EQ i x)))}
\]

- FunArg problem!
FUNCTION Specifies Static Scoping

- Static Scoping

(DEFUN memq2 (x l)
 (AnyOf (FUNCTION (LAMBDA (i) (EQ i x)))
 l))

- Free variables are evaluated STATICALLY
 - bindings are taken from the environment where \(\lambda \) was defined

- As it "sees" the \(x \) in memq2, that is the value it will take
Function Special Form

- FUNCTION behaves exactly like QUOTE except wrt evaluation of free variables:

- FUNCTION \approx STATIC EVALUATION
 [based on (compile-time) function definition]

- QUOTE \approx DYNAMIC EVALUATION
 [based on current (run-time) context]

- Lisp’s Compiler can compile
 (function (LAMBDA (...)) ...)
MEMQ with STATIC scoping

- In both Lisps with dynamic scoping and those without, the FUNCTION form introduces static scoping

\[
(\text{DEFUN memq (x l)}
\quad (\text{AnyOf (FUNCTION (LAMBDA (i) (EQ i x))) l }))
\]

- The \(x\) in the \(\lambda\) is resolved in the scope of \text{memq}
 so it is bound to the first parameter of \text{memq}

- Again, \text{memq} calls \text{AnyOf} which calls the \(\lambda\)

\[
(\text{DEFUN AnyOf (fn x)}
\quad (\text{COND ((NULL x) nil)}
\quad (\text{(funcall fn (CAR x)) t)}
\quad (\quad t \quad (\text{AnyOf fn (CDR x)})))))
\]

- But, the \(x\) in \text{AnyOf} cannot interfere with the \(x\) in \(\lambda\)
In the absence of some global definition or binding higher up on the stack

(defun dynamic-funs (x)
 (list (quote (lambda () x))
 (quote (lambda (y) (setq x y))))
)(setq funs (dynamic-funs 6))
(funcall (first funs)) → variable x unbound
Factory Method Example II

- If a global definition exists, it can be used

(defun dynamic-funs (x)
 (list (quote (lambda () x))
 (quote (lambda (y) (setq x y))))
(setf x nil)
(setq funs (dynamic-funs 6))
(funcall (first funs)) → nil
(funcall (second funs) 5) → 5
(funcall (first funs)) → 5
Even in Lisp’s with static binding, function is necessary to tell the compiler that static scoping is desired for an expression

```
(defun static-funs (x)
    (list (function (lambda () x))
          (function (lambda (y) (setq x y))))

(setq funs (static-funs 6))
(funcall (first funs)) → 6
(funcall (second funs) 43) → 43
(funcall (first funs)) → 43
```

Note: it is possible to create "objects" this way that have local data protected by accessor methods