Introduction

- λ-calculus fully expresses computations of any programming language

- Is λ-calculus sufficiently expressive to express itself?
Implementing λ-calculus

- What would be required to automate λ-calculus representation and evaluation
 - representation for constants, applications and function definitions
 - Function for checking types of data
 - Functions for creating and accessing components of representations
 - Functions for λ-calculus evaluation
 - checking for free variables
 - renaming variables
 - performing substitutions
 - garbage collection

Why Garbage Collection

- No imperative assignment \rightarrow no side-effects
- Efficiency maintained by shared references
- Sharing \rightarrow function arguments may be shared by others

$$(\lambda x \mid (\text{CONS } (\text{CONS } 2 \ x) \ (\text{CONS } 3 \ x)) \ \ (\text{CONS } 1 \ \text{nil}))$$

$\ x \ \text{shared?}$

- Function cannot tell if it is safe to modify arguments (i.e. cannot deallocate!)
- But functions must allocate memory for new values
- Recursive loops could quickly consume all memory
- Garbage collectors analyze global pattern of dependencies to safely deallocate data
More on Memory Management

- "primitive values" with no shared sub-components can be passed by value - eliminating memory allocation

- static analysis of programs can detect arguments that are used only once (linearity)

- programs can then be optimized to do
 - imperative in-place modification when it is safe
 - deterministic deallocation of memory to avoid garbage generation

- For small toy examples, we can ignore garbage collection issues

Representation: λ-Calculus BNF

- What do we have to represent?

\[
\langle \text{expression} \rangle := \langle \text{identifier} \rangle \mid \langle \text{application} \rangle \mid \langle \text{function} \rangle
\]

\[
\langle \text{identifier} \rangle := a \mid b \mid c \mid \cdots
\]

\[
\langle \text{application} \rangle := \text{"} \langle \text{expression} \rangle \ \text{"} \langle \text{expression} \rangle \text{"}
\]

\[
\langle \text{function} \rangle := \text{"}(\lambda\ \langle \text{identifier} \rangle \ \text{"}\mid \langle \text{expression} \rangle \text{"})"
\]
Primitive λ-Calculus Representation I

- In λ-calculus, all data types are represented as λ expressions
- Need a way to distinguish: identifier, application, function
- Use a cons cell where FIRST is type, and SECOND is data
- Let the integers 0, 1, 2 denote identifiers, applications and function defs respectively
 - Let Φ be the appropriate λ-calculus representation

 \[
 \begin{align*}
 [0 \ \Phi] & \quad ;; \text{an identifier} \\
 [1 \ \Phi] & \quad ;; \text{an application of functions} \\
 [2 \ \Phi] & \quad ;; \text{a function definition}
 \end{align*}
 \]

Primitive λ-Calculus Representation II

- Use cons cell type marker with Church integers for identifiers
 - Instead of x, y, z we use integer identifiers
 - To discriminate from numeric integers, write 0, 1, 2, ...
 - Where 0 is type-marked identifier with church number 0
 i.e. $0 \equiv \text{cons}(_0, _0)$, $1 \equiv \text{cons}(_0, _1)$

 \[
 \begin{align*}
 \text{type} & \quad \text{id} \\
 \text{type} & \quad \text{id}
 \end{align*}
 \]

- Use cons cell type marker with cons cell for applications
 - Consider application of a to b, (a b)
 - To discriminate from lists, write application (a b) as $(a \ b)$

\[
\equiv $(0 \ 1)
\equiv \text{cons}(_1, \text{cons}(\text{cons}(_0, _0), \text{cons}(_0, _1)))
\]

\[
\begin{align*}
\text{type} & \quad \text{id} \\
\text{type} & \quad \text{id}
\end{align*}
\]
Again, use CONS cell for function definition:

\[(\lambda a \mid (a \ b)) \]

\[\equiv (\lambda 0 \mid (0 \ 1)) \]

\[\equiv \text{cons}(2, \text{cons}(\text{cons}(0,0)\text{type},0\text{id}),\text{cons}(1,\text{type}),\text{cons}(\text{cons}(0,0),\text{cons}(0,1))))\text{type} \]

\[\text{cons}(\text{cons}(0,0)\text{type},0\text{id}),\text{cons}(1,\text{type}),\text{cons}(\text{cons}(0,0),\text{cons}(0,1))))\text{type id} \text{id} \text{id} \]

Creating Representations I

Using abstract programming idioms

\text{new-id}(\text{last-id})

\[\equiv \text{cons}(0,\text{successor(\text{second(last-id))}}) \]

\text{new-app}(\text{function,argument})

\[\equiv \text{cons}(1,\text{cons(function,argument)}) \]

\text{new-def}(\text{parameter, body})

\[\equiv \text{cons}(2,\text{cons(parameter, body)}) \]
Creating Representations II

\((\lambda a \mid (a \ b))\ c\)
\equiv\ LET\ a = 0 \ IN\n \ LET\ b = \text{new-id}(a) \ IN\n \ LET\ c = \text{new-id}(b) \ IN\n \text{new-app(}\n \text{new-def}(a, \text{new-app}(a, b)),\n c)\n
Representation of Type Predicates

Predicates using abstract programming idioms

- Recall: all datatypes are of the form: (\text{type, value})

\(\text{is-id}(\langle E \rangle)\)
\text{;; True if } \langle E \rangle \text{ is constant identifier}
\equiv IF \text{car}(\langle E \rangle)=0 \ THEN \ T \ ELSE \ F

\(\text{is-app}(\langle E \rangle)\)
\text{;; True if } \langle E \rangle \text{ is constant identifier}
\equiv IF \text{car}(\langle E \rangle)=1 \ THEN \ T \ ELSE \ F

\(\text{is-func}(\langle E \rangle)\)
\text{;; True if } \langle E \rangle \text{ is constant identifier}
\equiv IF \text{car}(\langle E \rangle)=2 \ THEN \ T \ ELSE \ F
Accessing Representations

Abstract idioms for datatypes of the form \((\text{type}, \text{value})\)

- **Application Accessors for** \((\text{type} \ (\text{function \ argument}))\)

 \[
 \text{get-func}(A) \equiv \text{car}(\text{cdr}(A)) ; \text{ie funct of application}
 \]

 \[
 \text{get-arg}(A) \equiv \text{cdr}(\text{cdr}(A)) ; \text{ie arg of application}
 \]

- **Function Definition Accessors for** \((\text{type} \ (\text{parameter \ body}))\)

 \[
 \text{get-parm}(F) \equiv \text{car}(\text{cdr}(F)) ; \text{ie get } \lambda \text{ parameter}
 \]

 \[
 \text{get-body}(F) \equiv \text{cdr}(\text{cdr}(F))
 \]

\[\lambda\text{-calculus Evaluation Function}\]

- **Implement \(\lambda\)-evaluation as 3 functions:**
 - eval: takes a \(\lambda\)-calculus expression and returns its evaluation
 - apply: applies a function to an argument
 - subs: substitutes an expression for a constant in an expression

- Implementations are given in abstract programming notation
\(\lambda \)-Calculus Eval Function

\[
eval(\langle E \rangle) \equiv
\]

IF is-id(e)
THEN \(\langle E \rangle \equiv f : a \text{ constant} \)
ELSE IF is-app(e)
THEN \(\langle E \rangle \equiv (\langle F \rangle \langle A \rangle) : \text{ application} \)
apply(get-func(e), get-arg(e))
ELSE \(\langle E \rangle \equiv (\lambda x | \langle \text{BODY} \rangle) : \text{ definition} \)
new-func(get-parm(e), eval(get-body(e)))

\[\Rightarrow\text{ Note: body of definitions are evaluated before use}\]

Applicative-Order Apply Function

\[
\text{apply}(\langle F \rangle, \langle A \rangle) \equiv \langle E \rangle ;; \text{ apply function } \langle F \rangle \text{ to argument } \langle A \rangle
\]
LET \(b = \text{eval}(\langle A \rangle) \) IN
IF is-id(\(\langle F \rangle \))
THEN \(\langle F \rangle \langle A \rangle \equiv (f \langle A \rangle) \)
ELSE IF is-app(\(\langle F \rangle \))
THEN \(\langle F \rangle \langle A \rangle \equiv (\langle G \rangle \langle C \rangle) \langle A \rangle \)
IF is-id(get-func(\(\langle F \rangle \)))
THEN new-app(\(\langle F \rangle \), b)
ELSE apply(\(\text{eval}(\langle F \rangle) \), b)
ELSE \(\langle (\lambda x | \langle G \rangle) \langle A \rangle \rangle \)
eval(subs(b, get-parm(\(\langle F \rangle \)), get-body(\(\langle F \rangle \))))
\textbf{λ-Calculus Substitution I}

- In an application like \((\lambda x \mid (\lambda y \mid x)) \; y\)
 - argument \(x\) is a free variable that would get bound on substitution
 - so, formal parameter \(\lambda y\) must be renamed

- In an application like \((\lambda y \mid y) \; x\)
 - formal parameter \(\lambda y\) does not have to be renamed
 - But, renaming \(\lambda y\) does not alter meaning

- Simplification: Do not check for free parameters — always rename formal parameters

\textbf{λ-Calculus Substitution II}

\texttt{subs(s,v,⟨E⟩) ;; substitute s for var v in expression ⟨E⟩}

\texttt{IF is-id(⟨E⟩)}
\texttt{THEN ;; base case, either constant matches or not}
\texttt{IF ⟨E⟩=v THEN s ELSE ⟨E⟩}

\texttt{ELSE IF is-app(⟨E⟩)}
\texttt{THEN ;; application, substitute within (⟨F⟩ ⟨A⟩)}
\texttt{new-app(subs(s,v,get-func(⟨E⟩)),}
\texttt{ subs(s,v,get-arg(⟨E⟩)))}

(continued on next slide ...)
ELSE ;; Definition (\(f/B\)) - check variable issues!

LET f = get-parm(\(E\)) IN

IF f=v
THEN ;; var shadowed by formal parameter -> done!
\(E\)

ELSE ;; always rename binding variable
LET z=new-id() AND b = get-body(\(E\)) IN
new-func(
 z, subs(s,v, ;; beta substitution
 subs(z,f,b))) ;; alpha renaming

Applying \(\lambda\)-Calculus Evaluation

▶ To evaluate: \((\lambda x \mid x) a\)

LETREC zero = (\(\lambda sz \mid z\))
AND successor = (\(\lambda x (\lambda sz \mid s(xsz))\))
AND add =
 :
AND zerop =
 :
AND eval = \(\langle\text{BODY}\rangle\)
AND apply = \(\langle\text{BODY}\rangle\) AND subs = \(\langle\text{BODY}\rangle\) IN

LET x = 0 IN
LET a = new-id(x) IN
 eval(new-app(new-func(x,x),a))
Here, we ignore underlying representation

Just examine how Eval, Apply and Subs work together

Square brackets avoid confusion with λ-C arguments

eval[(\lambda y | s)] ;; Case: function def
new-func[get-id[(\lambda y | s)]
 eval[s]]
get-id[(\lambda y | s)] → y
get-body[(\lambda y | s)] → s
new-func[y, s]
→(\lambda y | s)

λ-Calculus Evaluation Example II

eval[((\lambda y | s) x)] ;; Case: application

apply[get-fun[((\lambda y|s) x)],
 get-arg[((\lambda y|s) x)]]

≡apply[(\lambda y | s), x] ;; (definition, arg)

eval[
 subs[eval[x],
 get-id[(\lambda y | s)]
 get-body[(\lambda y| s)]]
 eval[subs[x, y, s]]
 eval[s]
→ s
\[\text{eval} \left[\left((\lambda \ y | s) \ ((\lambda \ y | s) \ x) \right) \right] ;; \text{Case: application} \]

\[\text{apply} \left[(\lambda \ y | s) , ((\lambda \ y | s) \ x) \right] ;; \text{Case: (Def, Arg)} \]

\[\text{eval} \left[\text{subs} \left[\text{eval} \left[((\lambda \ y | s) \ x) \right] , \ y , \ s \right] \right] \] ; case: application

\[\text{apply} \left[(\lambda \ y | s) , \ x \right] ;; \text{(definition, arg)} \]

\[\text{eval} \left[\text{subs} \left[\text{eval} \left[x \right] , \ y , \ s \right] \right] \]

\[\text{eval} \left[x \right] \rightarrow x ;; \text{constant identifier} \]

\[\text{eval} \left[\text{subs} \left[x , \ y , \ s \right] \right] \]

\[\rightarrow s \]

\[\text{eval} \left[\text{subs} \left[s , y , s \right] \right] \]

\[\text{subs} \left[s , y , s \right] \rightarrow s \]

\[\text{eval} \left[s \right] \rightarrow s \]

\[\text{\textit{\lambda-Calculus Evaluation as Function}} \]

\[\text{\textbullet\ A normal order version of apply is required for recursive functions} \]

\[\text{\textbullet\ Need to add accumulator variables to pass forward next identifier number} \]

\[\text{\textbullet\ Not conceptually difficult, but messes up code} \]

\[\text{\textbullet\ And that’s it:} \]

\[\text{\textbullet\ \lambda-calculus evaluation can be written as a \lambda-calculus expression} \]

\[\text{\textbullet\ Therefore, \lambda-calculus evaluation is just another function} \]

\[\text{\textbullet\ \lambda-calculus can be used to implement \lambda-calculus} \]
Bootstrapping

- Functional languages can be written in abstract programming language
- Abstract programming has a simple translation to λ-calculus
- λ-calculus has simple syntax, evaluation rules and semantics
 - Simple to implement
 - Easy to show correctness
- Easy to prototype a new language
 - Define translation from new language to abstract programming language
 - Run new language on top of abstract programming layer
 - Write native code compiler in new language
 - Now can compile new language directly to platform
- Called bootstrapping

λ-Calculus Evaluation in Lisp

- Possible to implement λ-Calculus Evaluator in Lisp
- But: Lisp has:
 - basic datatypes: numbers, lists, constants
 - a type system with predicates: 'atom', 'consp'
 - primitive functions: +, -, cons, car, cdr
- Can replace low-level λ-calculus idioms for numbers and lists with high-level Lisp implementations
- Do not need separate structure to represent type of data
- Requires
 - rewrite of creators, accessors and predicates
 - extra case in interpreter to intercept and call built-in functions directly
 - minor changes to other components
Efficiency Issues

▶ Consider the following example

\[
(\lambda x \mid \text{IF } T \text{ THEN } ((\lambda y \mid (\lambda z \mid y \ z) \ x) \ x) \\
\text{ELSE } ((\lambda y \mid y) \ x)) \ z \\
\beta \rightarrow \left[z/x \right] \text{IF } T \text{ THEN } ((\lambda y \mid (\lambda z \mid y \ z) \ x) \ x) \ \text{ELSE } ((\lambda y \mid y) \ x)
\]

▶ Followed generic \(\beta\)-reduction. Notice anything odd?

▶ Substituted for both halves of IF statement even though ELSE is never used

▶ Substitution involves rebuilding a copy of the expression

▶ \((\lambda z \mid y \ z)\) rebuilt even though no \(x\)

▶ In \((\lambda x \mid (\lambda y \mid (\lambda z \mid \langle E \rangle)))\), expression \(\langle E \rangle\) is rebuilt 3 times!

Lazy Substitution

▶ How do we avoid redundant substitutions?

1. Note any parameter substitutions introduced by applications
 (keep in ordered list)
2. Start processing the expression
3. Perform substitution only if parameter encountered
Binding Lists

- Bindings list are a simple approach to efficient substitution
- Naive eval: substitute everything first, then eval

\[
\text{eval}[(\lambda x\ |\ \text{IF } T \text{ THEN } (\lambda z\ |\ x) \text{ ELSE } (\lambda z\ |\ z\ x))\ y)]
\[
[y/x] \ (\text{IF } T \text{ THEN } (\lambda z\ |\ x) \text{ ELSE } (\lambda z\ |\ z\ x))
\rightarrow \text{IF } T \text{ THEN } (\lambda z\ |y) \text{ ELSE } (\lambda z\ |z\ y)
\]

- Smart substitution: eval until substitution is needed, then substitute

\[
\text{eval}[(\lambda x\ |\ \text{IF } T \text{ THEN } (\lambda z\ |\ x) \text{ ELSE } (\lambda z\ |\ z\ x))\ y]]
\]

Binding Parameters to Expressions

- Parameter value may in turn be an expression

\[
\text{eval}[\ (\lambda x\ |\ (*\ 2\ x))\ (+\ 3\ 2),\ \{}\]
\]
\[
\text{eval}[\ (*\ 2\ x),\ \{x\leftarrow(+\ 3\ 2)\}]\]
\]
\[
\text{eval}[2,{x\leftarrow(+\ 3\ 2)}] \rightarrow 2
\]
\[
\text{eval}[x,{x\leftarrow(+\ 3\ 2)}]
\]
\[
\text{eval}[\ (+\ 3\ 2)] \rightarrow 5
\]
Bindings and Multiple Arguments

- Multiple bindings are added to bindings list in order of occurrence

\[
\text{eval[} \lambda x \mid \lambda y \mid (+ x y) \text{] 3 5, \{\}]}
\]
\[
\text{eval[} \lambda y \mid (+ x y) \text{] 5, \{ x ←3 \}]}
\]
\[
\text{eval[} (+ x y) \text{] 3 5, \{ y ←5, x ←3 \}]}
\]
\[
\text{eval[} x \text{] 5, \{ y ←5, x ←3 \}]}
\]
\[
\text{eval[} 3 \text{] → 3}
\]
\[
\text{eval[} 5 \text{] → 5}
\]
\[
\text{eval[} (+ 3 5) \text{] →5}
\]

Bindings and Shadowed Arguments

- Bindings looked up from left to right. First value found is used

\[
\text{eval[} \lambda x \mid + \left(\lambda x \mid (+ x x) \text{] 5 \right) x \text{] 3, \{\}]}
\]
\[
\text{eval[} (+ (\lambda x \mid (+ x x) \text{] 5 \right) x \text{] 3, \{ x ←3 \}]}
\]
\[
\text{eval[} (\lambda x \mid (+ x x) \text{] 5, \{ x ←3 \}]}
\]
\[
\text{eval[} (+ x x) \text{] 5, \{ x ←3 \}] \rightarrow 10
\]
\[
\text{eval[} x \text{] 3, \{ x ←3 \}] \rightarrow 10
\]
\[
\text{eval[} 10 \text{] 3, \{ x ←3 \}] \rightarrow 10
\]
\[
\text{eval[} x \text{] 3, \{ x ←3 \}] \rightarrow 13
\]
Problems with Bindings and Free Variables I

\[\text{eval}[(\lambda y | (\lambda x | + x y)) 4, \{\}] \]
\[\text{eval}[(\lambda x | + x y), \{y\leftarrow 4\}] \]

- No application here — cannot evaluate \((\lambda x | + x y)\) further
- But, should have \(y\) bound to 4
- Our simple interpreter actually handles this (but poorly):
 - evaluate \(\lambda\)-body: \(+ x y\) in environment \((y\leftarrow 4)\)
 - create new function with evaluated body \((\lambda x | \langle \text{BODY} \rangle)\)
 \[\text{eval}[(+ x y, \{y\leftarrow 4\}] \rightarrow (+ x 4) \]
 \[\rightarrow (\lambda x | + x 4) \]
- Above solution breaks: See next slide!

Problems with Bindings and Free Variables II

\[\text{eval}[(\lambda y | (\lambda y | (y y))) 4, \{\}] \]
\[\text{eval}[(\lambda y | (y y)), \{y\leftarrow 4\}] \]

DO NOT DO THIS!
\[\rightarrow (\lambda y | \text{eval}[(y y), \{y\leftarrow 4\}]) \]
\[\equiv (\lambda y | 4 4) \]

- Dynamic binding results in wrong answer! The “funaarg” problem
- Could try to represent fact that \(y\) is bound in inner \(\lambda\)

\[\text{eval}[(\lambda y | (y y)), \{y\leftarrow 4\}] \]
DO NOT DO THIS!
\[\rightarrow (\lambda y | \text{eval}[(y y), \{y\leftarrow y, y\leftarrow 4\}]) \]
\[\rightarrow (\lambda y | (y y)) \]

- Solution Breaks in more complex cases
Imagine we define a function in a local context and return it:

\[
(\text{LET } x=1 \text{ IN LET } f(y)=x+y \text{ IN } f) \rightarrow f
\]

Now apply this function to \(x\), where \(x=2\)

\[
\text{LET } x = 2 \text{ IN (LET } x=1 \text{ IN LET } f(y)=x+y \text{ IN } f) \ x)
\]

Translates into \(\lambda\)-calculus as:

\[
(\lambda x \ | \ ((\lambda x | (\lambda y | + x y)) \ 1) \ x) \ 2
\]

Expected answer? Increment of 2 = 3

```
Problems with Bindings and Free Variables IV
```

```
LET x =2 IN ( (LET x=1 IN LET f(y)=x+y IN f) x )
```

```
eval[ (\lambda x | ((\lambda x| (\lambda y| + x y)) 1) x)  2 ,{}]
```

```
Regular apply, make binding
```

```
eval[ ((\lambda x | (\lambda y | + x y)) 1) x, \{x←2\}]
```

```
Apply (f a): eval f1, then eval a1, then apply f1 to a1
```

f1=eval[((\lambda x | (\lambda y | + x y)) 1), \{x←2\}]

```
Apply (f a): eval f2, then eval a2, then apply f2 to a2
```

f2=eval[(\lambda x | (\lambda y | + x y)), \{x←2\}]

```
Def: eval body (\lambda y | + x y) for local bindings
```

```
eval[ (\lambda y | + x y), \{x←2\}]
```

```
Def: eval body (+x y) for local bindings
```

```
eval[ + x y, \{x←2\}] \rightarrow + 2 y  \text{ OOPS!!}
```
Problems with Bindings and Free Variables IV

- Having made the wrong substitution, we get the wrong answer!

\[
\begin{align*}
\text{new-}\text{func}(y,+2\ y) & \rightarrow (\lambda y|+2\ y) \\
\text{f2=} & \text{new-}\text{func}(x,(\lambda y|+2\ y)) \rightarrow (\lambda x|(\lambda y|+2\ y)) \\
a2= & \text{eval}[1,\{x\leftarrow2\}] = 1 \\
\text{apply}[(\lambda x|(\lambda y|+2\ y)),1] & = \\
\text{f1=} & (\lambda y|+2\ y) \\
a1= & \text{eval}[x,\{x\leftarrow2\}] = 2 \\
\text{apply}[(\lambda y|+2\ y), 2] & \rightarrow 4 \quad \text{WRONG!}
\end{align*}
\]

Lexical Context

- Can you see why early Lisp’s has Dynamic scoping?
 - Implementation used simple bindings lists.
 - Dynamic scoping does not match λ-calculus semantics
 - Difficult to debug and understand
Lexical Context

- In static scoping, need to save the context in which a λ is defined.
- Otherwise, we can get into a situation where we make the wrong substitution.

\[
\text{LET } x = 2 \text{ IN } \\
(\text{LET } x = 1 \text{ IN } \\
\quad \text{LET } f(y) = x + y \text{ IN } f \quad x)
\]
- In the above example, \(x = 2 \) got substituted for the \(x \) in the inner λ.
- This is because the function was used in a different context than it was defined.
 - Defined in the magenta context
 - Used in the blue context

Closures

- The set of bindings that are active for a definition is called its environment or context.
- An expression is "executed in" an environment.
- An expression together with its environment is called a closure.
- \(<\text{closure}> = \{\text{expression, environment}\}\)
- By saving a closure with a λ, we can ensure it evaluates to the same thing whenever and wherever it is executed.
- Should be no free variables in a closure.
Simple Application with Closures

\[\text{eval}\left[(\lambda x \mid x) \ 2\right] ,\{}\right] \]

Regular apply: \(\text{eval} \ f_1, \ \text{eval} \ a_1, \ \text{apply} \ f_1 \ \text{to} \ a_1 \)

\[f_1 = \text{eval}\left[(\lambda x \mid x) \right] ,\{}\right] \]

Definition: make closure
\[f_1 = <(\lambda x \mid x) ,\{}\right] > \]

\[a_1 = \text{eval}\left[2\right] = 2 \]

\[\text{apply}\left[f_1, \ a_1 \right] \]

Eval \(f_1 \) body in environment
with \(x=a_1 \) and context of \(f_1={} \)
\[\text{eval}\left[x, \{x\leftarrow 2\}+\{} \right] \]

\[\rightarrow 2 \]

▶ Seems like extra machinery, but useful in complex cases

Forming and Applying Closures

▶ Forming closures
▶ Given definition \((\lambda p \mid \langle \text{BODY} \rangle) \) defined in environment \(E \)
▶ We form the closure \(<(\lambda p \mid \langle \text{BODY} \rangle) ,E> \)

▶ To apply closure \(<(\lambda p \mid \langle \text{BODY} \rangle) ,E> \) to argument \(A \) in context \(G \)
▶ evaluate \(\langle \text{BODY} \rangle \)
▶ in an environment = \{ \(p\leftarrow A + E + G\} \)
Trickier Application with Closures I

LET \(x=1 \) IN LET \(y=(\lambda z|z+x) \) IN \(y(3) \)

\[\text{eval}[(\lambda x|(\lambda y|(y \ 3)) (\lambda z|z+x)) \ 1, \ {}]\]

Regular apply, eval f1, eval a1, apply f1 to a1

\(f1=\text{eval}[(\lambda x|(\lambda y|(y \ 3)) (\lambda z|z+x)), \ {}]\)

Definition: make closure

\(f1=<(\lambda x|(\lambda y|(y \ 3)) (\lambda z|z+x)>, \{}\>

\(a1=\text{eval}[\ 1, \ {}] = 1\)

apply(\(f1,a1 \))

Eval f1 body with a1 and context of f1

\[\text{eval}[(\lambda y|(y \ 3)) (\lambda z|z+x), \{x=1\}]\]

Trickier Application with Closures II

\[\text{eval}[(\lambda y|(y \ 3)) (\lambda z|z+x), \{x=1\}]\]

Regular apply, eval f2, eval a2, apply f2 to a2

\(f2=\text{eval}[(\lambda y|(y \ 3), \{x=1\}]\)

Definition: make closure

\(f2=<(\lambda y|(y \ 3), \{x=1}\>

\(a2=\text{eval}[(\lambda z|z+x), \{x=1\}]\)

Definition: make closure

\(a2=<(\lambda z|z+x), \{x=1}\>

apply(\(f2,a2 \))

Eval f2 body with a2 and context of f2

\(a2 \) is a closure— parm \(y \) is bound to a closure

\[\text{eval}[(y \ 3), \{y=<(\lambda z|z+x), \{x=1\}> ,x=1\}]\]
Trickier Application with Closures III

eval [(y 3), {y = ((λz | z+x), {x=1}>, x=1}]

Regular apply, eval f3, eval a3, apply f3 to a3

f3 = eval [y, {y = ((λz | z+x), {x=1}>, x=1}]
f3 = ((λz | z+x), {x=1}>

a3 = eval [3] = 3

apply [f3, a3]

Eval f2 body with a2 and context of f2

Eval [z+x, {z=3, x=1}]

Regular apply...

f4 = eval [z, {z=3, x=1}] = 3

a4 = eval [x, {z=3, x=1}] = 1

apply [f4, a4]

eval [+ 3 1] → 4

Applications with Closures I

LET x = 2 IN (LET x=1 IN LET f(y)=x+y IN f) x

eval[(λx | (λx | (λy | + x y) 1) x) 2 ,{}]

Regular apply: eval f1, eval a1, apply f1 to a1

f1 = eval [(λx | ((λx | (λy | + x y) 1) x) , {}]

Definition: make closure
f1 = ((λx | (λy | + x y) 1) x) ,{}

a1 = eval [2] = 2

apply (f1, a1)

f1 is closure: eval f1 body with arg a1 and context of f1
f1 = eval [((λx | (λy | + x y) 1) x , {x ← 2} + {}]
Applications with Closures II

\(f_1 = \text{eval} \left[\left(\lambda x \mid (\lambda y \mid + x \; y) \right) 1 \right] x, \{x \leftarrow 2\} + \{\} \)

Regular apply: \(\text{eval} \; f_2, \; \text{eval} \; a_2, \; \text{apply} \; f_2 \; \text{to} \; a_2
\)

\(f_2 = \text{eval} \left[\left(\lambda x \mid (\lambda y \mid + x \; y) \right) 1 \right] \{x \leftarrow 2\} \)

Regular apply: \(\text{eval} \; f_3, \; \text{eval} \; a_3, \; \text{apply} \; f_3 \; \text{to} \; a_3
\)

\(f_3 = \text{eval} \left[\left(\lambda x \mid (\lambda y \mid + x \; y) \right) \right] \{x \leftarrow 2\} \)

Definition: make closure

\(f_3 = < \left(\lambda x \mid (\lambda y \mid + x \; y) \right), \{x \leftarrow 2\} > \)

\(a_3 = \text{eval} \left[1, \{x \leftarrow 2\} \right] \)

apply\((f_3, a_3) \)

Closure: eval \(f_3 \) body with arg \(a_3 \) and context of \(f_3 \)

Applications with Closures III

\(\text{eval} \left[(\lambda y \mid + x \; y) \right], \{x \leftarrow 1, \; x \leftarrow 2\} \)

Definition: make closure

\(< (\lambda y \mid + x \; y), \{x \leftarrow 1, \; x \leftarrow 2\} > \)

\(f_2 = < (\lambda y \mid + x \; y), \{x \leftarrow 1, \; x \leftarrow 2\} > \)

\(a_2 = \text{eval} \left[x, \{x \leftarrow 2\} \right] = 2 \)

apply\((f_2, a_2) \)

Closure: eval \(f_2 \) body

in env with arg = \(a_2 \) and \(f_2 \) context

\(\text{eval} \left[+ \; x \; y, \{y \leftarrow 2, x \leftarrow 1, \; x \leftarrow 2\} \right] \)

Apply: eval \(f_3 \), eval \(a_4 \), \(a_5 \), and apply \(f_3 \)

\(a_4 = \text{eval} \left[x, \{y \leftarrow 2, x \leftarrow 1, \; x \leftarrow 2\} \right] = 1 \)

\(a_5 = \text{eval} \left[y, \{y \leftarrow 2, x \leftarrow 1, \; x \leftarrow 2\} \right] = 2 \)

apply\((+, 1, 2) \)

\(\rightarrow 3 \ldots \)
Other Uses for Closures

- Closures can be used for creating delayed computations
 - Delay and force predicates covered earlier
- Making recursion more efficient

Bindings and Recursion I

- Applicative order reduction blows up with Combinator Y
 \[R<YR> \rightarrow RR<YR> \rightarrow RRR<YR> \]
- Normal order is inefficient in general - but suppose we use it
- Bindings evaluate Fixed-Point Combinator correctly
 \[F \equiv (\lambda f \mid (\lambda n \mid \text{zerop}(n) \ 0 \ f(n-1))) \]
 \[YF \equiv (\lambda f \mid (\lambda x \mid f (x \ x)) \ (\lambda x \mid f (x \ x)) \) \ F,\{} \]
 \[\text{eval}[(\lambda x \mid f (x \ x)) \ (\lambda x \mid f (x \ x)), \{f \leftarrow F\}] \]
 \[\ldots \]
 \[\rightarrow (\lambda x \mid F (x \ x)) \ (\lambda x \mid F (x \ x)) \equiv (YF) \]
Bindings and Recursion II

eval[(λf | (λn | zerop(n) 0 f(n-1))) ⟨YF⟩ 1, {}]

eval[(λn | zerop(n) 0 f(n-1)) 1, {f←⟨YF⟩}]

eval[zerop(n) 0 f(n-1), {n←1,f←⟨YF⟩}]

 eval[zerop(n), {n←1,f←⟨YF⟩}] → F

 eval[f(n-1), {n←1,f←⟨YF⟩}]

 eval[⟨YF⟩, {n←1,f←⟨YF⟩}] → F ⟨YF⟩

 eval[n-1, {n←1,f←⟨YF⟩}] → 0

 eval[F ⟨YF⟩ 0, {n←1,f←⟨YF⟩}]

Bindings and Recursion III

▶ Process repeats

eval[(λf | (λn | zerop(n) 0 f(n-1))) ⟨YF⟩ 0,
 {n←1,f←⟨YF⟩}]

 eval[(λn | zerop(n) 0 f(n-1)) 0,
 {f←⟨YF⟩,n←1,f←⟨YF⟩}]

 eval[zerop(n) 0 f(n-1) 0,
 {n←0,f←⟨YF⟩,n←1,f←⟨YF⟩}]

 eval[zerop(n), {n←0,f←⟨YF⟩,n←1,f←⟨YF⟩}]

 eval[zerop(0),
 {n←0,f←⟨YF⟩,n←1,f←⟨YF⟩}] → 0

 eval[0] → 0
Closures and Recursion I

- We end up with many copies of the function in the environment
- Closures can be used to eliminate duplicate copies
- Every instance of a recurring evaluation uses the same closure
 - The body is the same
 - The lexical definition is the same
- Imperatively modify closure so that it points to itself
- Eliminates combinators and the need for normal order reduction
- Imperative operation is internal so it does not affect referential transparency

Closures and Recursion II

\[
E \equiv \text{LETREC } f = \langle \text{BODY} \rangle \text{ IN } \langle \text{EXPR} \rangle
\]

\[
C \equiv <\langle \text{BODY} \rangle, \{f \leftarrow C\}> <\langle \text{EXPR} \rangle, \{f \leftarrow \{\langle \text{BODY} \rangle, C\} \}>
\]

\[
E \equiv <\langle \text{EXPR} \rangle, \{f \leftarrow C\}>
\]
Closures and Recursion III

\[\text{LETREC } z(n) = \text{zerop}(n) \ 0 \ z(n-1) \ \text{IN } z(1) \]

\[C \equiv \langle (\lambda n | \text{zerop}(n) \ 0 \ z(n-1)), \{z \leftarrow C\} \rangle \]

\[E \equiv \langle (z \ 1), \{z \leftarrow C\} \rangle \]

eval[E,{}

eval[\langle (z \ 1), \{z \leftarrow C\} \rangle, \{}

eval[\langle (z \ 1), \{z \leftarrow C\} \rangle

f1=eval[\langle (\lambda n | \text{zerop}(n) \ 0 \ z(n-1)), \{z \leftarrow C\} \rangle, \{z \leftarrow C\} \]

f1=\langle (\lambda n | \text{zerop}(n) \ 0 \ z(n-1)), \{z \leftarrow C\} \rangle

a1=eval[1]

apply[f1,a1]

eval[\text{zerop}(n) \ 0 \ z(n-1), \{n \leftarrow 1, z \leftarrow C\}]

\]

Closures and Recursion IV

\[\text{eval}[\text{zerop}(n) \ 0 \ z(n-1), \{n \leftarrow 1, z \leftarrow C\}] \]

\[\text{eval}[\text{zerop}(n), \{n \leftarrow 1, z \leftarrow C\}] \]

F

NOTE: Under applicative, all args evaluated!
Have to treat IF as special form to avoid infinite regress! Well, assume we did:

\[\text{eval}[z(n-1), \{n \leftarrow 1, z \leftarrow C\}] \]

Clearly, z will get value from context again.
Recursion emerges from self-reference
Lazy Execution

- Lazy substitution made substitution more efficient
- Still required inefficient normal-order reduction for recursion
- Can more laziness further increase efficiency?
- Add lazy evaluation of functions

How? What properties do we want

- Delayed execution of a function should not change its value
- Execution of a closure at any time always returns the same answer
- It should be referentially transparent
- Evaluation of an expression can only be affected by free variables
- Need to store these bindings

Closure-based Execution

- Replace all applications in expression with closures
 - Form the closure: \(<\text{expression, current environment}>\)
 - Replace application in expression with closure

- Some applications will never be needed
- Evaluate any closures whose values we need
Meta-Interpreter for Pure Lisp

- A λ-calculus interpreter can be expressed in λ-calculus
- A Pure Lisp interpreter can be expressed in Pure Lisp
- Internal use of imperative operations can improve efficiency without compromising referential transparency — code executes the same way regardless of where or when it is executed