Functional Programming in *Lisp*

- The Theory of Functions
- *LispBasics*
 - Overview
 - Data Structures (The S-expression)
 - Built-in Functions + Predicates
 - Evaluation (Forms)
 - Lambda-Expressions
 - Special Forms
 - Functional Arguments + Label Lambda-Expressions
Issues in Functional Programming

▶ Issues
 ▶ Recursion, Variables, Efficiency
 ▶ Funarg Problem (Scoping)
 ▶ Program=Data (EVAL, NLAMBD A, OOP)
 ▶ Lambda Calculus
 ▶ SECD Machine
 ▶ Lazy evaluation and Series

▶ Example (polynomials)

"Non-Functional" Lisp

▶ Practical “Extensions” to Lisp
 ▶ Functions with Side effects
 ▶ Numbers
 ▶ Dotted-Pair, Association & Property Lists
 ▶ Lisp qua Procedural Languages
Relations – Definition

- A n-ary relation relates items drawn from sets
- The set of performer and tune can be defined by a relation
- A relation has two parts:
 - The sets in the relation \(X_1, X_2, \ldots, X_n \).
 - A "graph" over the tuples taken from the elements which maps each tuple to true or false: \(G : X_1 \times X_2 \times \cdots \times X_n \to B \)
- E.g. Perhaps: \(G(\text{rolling_stones, start_me_up}) \to \text{true} \)
- Note each performer has many songs, each song can have multiple performers

Functions – Definition

- Def’n: A function \(f \) is a mapping
 - from one set, \(D \) (the domain),
 - to another set, \(R \) (the range),
 - where \(f \) has exactly one value for every domain element
- Formally:
 - \(f(d) \) defines at least one value: \(\forall d \in D. \exists r \in R. f(d) = r \)
 - \(f(d) \) defines at most one value:
 \[
 \forall d \in D. \forall r, s \in R. [f(d) = r \land f(d) = s] \Rightarrow r = s
 \]
Examples of Functions

- The age of a person is a function.
 - Formally: \(\text{age-of}(\text{Mary}) = 15 \)

- The address of a department is a function.
 - Formally: \(\text{birth-mother}(\text{russ}) = \text{claire} \)

- The square of a number is a function.
 - Formally: \(3^2 = 9 \)

Example Functions as Maps

<table>
<thead>
<tr>
<th>Function</th>
<th>Domain Set</th>
<th>Range Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>age-of</td>
<td>all persons</td>
<td>positive reals</td>
</tr>
<tr>
<td>birth-mother</td>
<td>all people</td>
<td>people</td>
</tr>
<tr>
<td>square</td>
<td>numbers</td>
<td>numbers</td>
</tr>
</tbody>
</table>
Functions and Non-functions

Are these examples functions?

▶ Yes. Every \(d \) has an \(r \) (e.g. \(\text{age-of}(d) \))

▶ No. Exists \(d \) with multiple \(r \) (e.g. \(\text{parent-of}(d) \))

▶ No. Exists \(d \) with no \(r \) (e.g. \(\sqrt{d} \))

N-ary Functions

▶ N-ary domain is the cross product of unary domains
 ▶ The domain of positive integers is: \(\mathbb{Z}^+ = \{0, 1, 2, 3, \ldots\} \)
 ▶ The domain of integer pairs is:
 \[
 \mathbb{Z}^2 = \mathbb{Z} \times \mathbb{Z} = \begin{bmatrix}
 (0, 0) & (0, 1) & \ldots \\
 (1, 0) & (1, 1) \\
 \vdots & \ddots
 \end{bmatrix}
 \]
 ▶ Each element of \(\mathbb{Z}^2 \) is a binary tuple

▶ Sum is a binary function mapping tuples \((z_1, z_2) \in \mathbb{Z}^2 \) to elements in \(\mathbb{Z} \)
 \[+ : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \]
Vector Functions

- **range** is the cross product of unary domains

 - The range of real pairs is:
 \[
 \mathcal{R}^2 = \mathcal{R} \times \mathcal{R} = \begin{bmatrix}
 (-\infty, -\infty) & \cdots & \\
 \vdots & \ddots & \\
 (+\infty, +\infty)
 \end{bmatrix}
 \]

 - Each element of \(\mathcal{R}^2 \) is a binary tuple \((r_1, r_2)\) where \(r_1, r_2 \in \mathcal{R}\)

- The rectangular-to-polar-coordinates function, \(a_{\text{spolar}}\), maps \(\mathcal{R}^2\) to radius-angle space \(\mathcal{R} \times \Theta\)

 \[a_{\text{spolar}} : \mathcal{R}^2 \rightarrow \mathcal{R} \times \Theta\]

- **NOTE:** for each element of the domain a vector function returns a exactly one tuple

Function Functions

- N-ary domain of objects

- Range is the space of functions

- Example: Machine Learning Neural Network
 - Domain: labeled set of examples and learning algorithm
 - Range: a function \(f\) that can be used to predict labels of unseen data
 - Mapping: learner : \(\mathcal{D} \rightarrow \mathcal{R}\)

- Sample Data point: \((5,1) (-2, -1) (3,1) (11,1) (-9, -1) (-20,-1)\)

- Sample Range value: \(f(x) = \text{if } x > 0 \text{ return } 1 \text{ else return } -1\)
Function Application Notation

- We say that "\(f \) is applied to an argument of \(D \) to give a value in \(R \)."

- Ways of indicating function application:
 - **Infix notation**: function name between arguments
 General form: \(a_1 \text{ fn } a_2 \) (e.g. \(5 + 7 \))
 - **Prefix notation**: function name before arguments
 General form: \(\text{fn}(a_1, a_2, \ldots) \)
 (e.g. \(+ (5, 7), \text{distance-between(ottawa, edmonton)} \))
 - **Postfix notation**: function name follows arguments
 General form: \(a_1, a_2, \ldots \text{ fn} \) (e.g. \((5, 7) + "\text{Reverse Polish notation}" \))

Equivalence of Notations

- Notations are equivalent, though there are preferred conventions:
 - \(+(1, 2) \equiv (1 + 2) \equiv (1, 2)+ \)
 - \(\text{grade-of(first-name,lastname)} \equiv \text{first-name grade-of last-name} \equiv \text{first-name last-name grade-of} \)
Image and Preimage

- **Def’n**: image of \(d \in D \) under function \(f \) is the result \(r \in R \)

- **Def’n**: preimage or inverse of \(r \in R \) under function \(f \) is the element(s) of \(d \in D \) that result in \(r \)

Composing Functions

- **Def’n**: The application of a function to result of another function

- **Notation**: \(f \circ g \), means \(f \) applied to result of \(g \)

- **Note**: Domain of outer function must accept result of inner function
 \(\text{domain}(f) \supseteq \text{range}(g) \)

- **Given the factorial function \(! \) and the sum function \(+ \), their composition is**: \(! \circ + \)

- **Example**: \(! \circ +(2, 3) = ![[+ (2, 3)]] = ![5] = 120 \) ! \circ + is a function taking two real numbers, and returning factorial if their sum \(\in \mathbb{Z}^+ \)