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One of the main applications of microarray technology is to determine the gene expression profiles of diseases and
disease treatments. This is typically done by selecting a small number of genes from amongst thousands to tens
of thousands, whose expression values are collectively used as classification profiles. This gene selection process is
notoriously challenging because microarray data normally contains only a very small number of samples, but range
over thousands to tens of thousands of genes. Most existing gene selection methods carefully define a function to
score the differential levels of gene expression under a variety of conditions, in order to identify top-ranked genes.
Such single gene scoring methods suffer because some selected genes have very similar expression patterns so using
them all in classification is largely redundant. Furthermore, these selected genes can prevent the consideration of
other individually-less but collectively-more differentially expressed genes. We propose to cluster genes in terms of
their class discrimination strength and to limit the number of selected genes per cluster. By combining this idea with
several existing single gene scoring methods, we show by experiments on two cancer microarray datasets that our
methods identify gene subsets which collectively have significantly higher classification accuracies.
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1. Introduction

DNA microarrays provide the opportunity to mea-

sure the expression levels of thousands of genes si-

multaneously. This novel technology supplies us a

large volume of data to systematically understand

various gene regulations under different conditions.

As one of the main applications, it is very impor-

tant to determine the gene expression profiles of

diseases and disease treatments. Among the thou-

sands of genes in the arrays, many of them do not

have their expression values distinguishably changed

across different condition, e.g., so-called “house keep-

ing” genes. These genes certainly would not be very

useful in profiling since they do not contribute much

to disease or treatment class recognition. In practice,

a small number, typically in tens, of genes that are

highly differentially expressed across different condi-

tions are to be selected to compose profiles for the

purpose of class prediction. This process is known

as gene selection; there are many existing methods,

which typically define a function to score the level of

how differentially expressed a gene is, under different

conditions, and identify those top ranked genes.1–5

Such single gene scoring methods typically suffer the

problem that some selected genes have very simi-

lar expression patterns, therefore using them all in

classification is largely redundant, and those selected

genes prevent other individually-less but collectively-

more differentially expressed genes from being se-

lected.

Several other gene selection methods have rec-

ognized the problem with the redundancy of some

highly expressed genes, and look for a subset of genes

that collectively maximize the classification accu-

racy. For example, Xiong et al. define a function

to measure the classification accuracy for individual

genes and select a subset of genes through Sequential

Forward [Floating] Selection (SF[F]S),6 which was

developed decades ago for general feature selection.

Guyon et al. propose another method that uses Sup-

port Vector Machines (SVMs) and Recursive Feature

Elimination (RFE).7 In terms of effectiveness, these

gene selection methods perform much better than

those single gene scoring methods, since they mea-

sure the classification strength of the whole set of se-

lected genes. Computationally, they are essentially

heuristics which replace exhaustive enumeration of

an optimal subset of genes which typically take much

longer to return a solution. The inefficiency of these

methods actually prevent them from being used in
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practice. Nevertheless, there are alternative imple-

mentations of the key idea, which is to exclude a gene

when there is already a similar gene been selected.

We propose another implementation which first

clusters genes according to their class discrimination

strength, namely, two genes that have very close class

discrimination strength are placed in a common clus-

ter; we then limit the number of genes per cluster

to be selected. This provides a more efficient clus-

tering process which, when combined with a single

gene scoring method, leads to an efficient and effec-

tive gene selection algorithm. We call our method

an EEGS-based gene selection method. In the next

section, we present the details of a novel measure of

class discrimination strength difference between two

genes, using their expression values. With this dis-

tance measure, we briefly explain how to adopt the

k-means algorithm8 to cluster genes. We also briefly

introduce three single gene scoring methods, namely

F-test3, Cho4 and GS,5 and two classifiers, namely, a

linear kernel SVM classifier7 and a k Nearest Neigh-

bor (KNN) classifier.3 Finally, we outline a complete

high level description of the EEGS-based gene selec-

tion methods. In Section 3, we briefly introduce our

performance measurements, followed by the dataset

descriptions, and our experimental results. Section

4 discusses parameter selection, the effects of vari-

ety within data sets, classifiers and the performance

measurements, and finally, the overall results com-

pared to single gene scoring methods. Section 5 sum-

marizes our main contributions, our conclusions on

the suitable datasets for the EEGS-based methods,

and some plans for future work.

2. The EEGS-Based Gene Selection

Methods

There are two challenges in microarray data classi-

fication. One is class discovery to define previously

unrecognized classes. The other is to assign individ-

ual samples to already-defined classes, which is the

focus here.

2.1. The Performance Measurements

The genes selected by a method are evaluated by

their class discrimination strength, measured by the

classification accuracy, defined as follows. For gene

selection purposes, a number of microarray samples

with known class labels are provided, which form a

training dataset. The selected genes are then used

for building a classifier, which can take a new mi-

croarray sample and assign it a class label. The set

of such samples for testing purpose is referred to as

the testing dataset, and the percentage of the cor-

rectly labeled samples is defined as the classification

accuracy of the method (on this particular testing

dataset). Note that we have to have the class labels

for the samples in the testing dataset in order to cal-

culate the classification accuracy. For computational

convenience, given a microarray dataset whose sam-

ples all have known class labels, only a portion of it

is used to form the training dataset; the rest of the

samples have their class labels removed and are used

to form the testing dataset. There are two popular

cross validation schemes adopted in the literature to

evaluate a method, which are `-Fold and Leave One

Out (LOO). In the `-Fold cross validation, the whole

dataset is (randomly) partitioned into ` equal parts

and, at one time, one part is used as testing dataset

and the other `−1 parts are used as training dataset.

The process is repeated for each part and the average

classification accuracy over these ` ones is taken as

the final classification accuracy. Here set ` = 5 and

repeat the process for 20 iterations. Therefore, the

final classification accuracy is the average over 100

values. For each of the LOO cross validation experi-

ments, only one sample is used as a testing dataset,

and the others form the training dataset. The pro-

cess is repeated for every sample and the final classi-

fication accuracy is defined as the percentage of the

correctly labeled samples. We report both the LOO

classification accuracies and the 5-Fold classification

accuracies for all the six tested gene selection meth-

ods in Section 3.

2.2. The Classifiers

We adopt two classifiers in our study. One is a linear

kernel SVM classifier that has been used in Guyon et

al.7 and the other is a KNN classifier that has been

used in Dudoit et al.3 Essentially, with a given set

of selected genes determined by some gene selection

method, the SVM classifier, which contains multi-

ple SVMs, finds decision planes to best separate the

labeled samples based on the expression values of

these selected genes. Subsequently, it uses this set

of decision planes to predict the class label of a test

sample. For a more detailed explanation of how the
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decision planes are constructed, the readers are re-

ferred to Guyon et al.7 The KNN classifier predicts

the label of a testing sample in a different way. Us-

ing the expression values of (only) the selected genes,

the classifier identifies the k most similar samples in

the training dataset. It then uses the class labels of

these k similar samples through a majority vote. In

our experiments, we set the value of k to be 5 as de-

fault, after testing for several values in the range 4

to 10.

2.3. The Single Gene Scoring Methods

As mentioned in the introduction, many of the ex-

isting gene selection methods are single gene scor-

ing methods that define a function to approximate

the class discrimination strength of a gene.1–5 Typ-

ically, an F-test gene selection method2, 9 is pre-

sented, which basically captures the variance of the

class variances of the gene expression values in the

dataset. A bigger variance indicates that a gene is

more differentially expressed and thus ranked higher.

Because class sizes might differ a lot, Cho et al.4

proposed a weighted variant, which was further re-

fined by Yang et al.5 We denote these three single

gene scoring methods as F-test, Cho and GS, respec-

tively, and combine the EEGS idea with them to have

the EEGS-based methods, denoted as EEGS-F-test,

EEGS-Cho and EEGS-GS, respectively.

2.4. Gene Clustering

Gene clustering in microarray data analysis is an in-

dependent research subject, in which genes having a

similar expression pattern are clustered for certain

applications. In our work here, we are particularly

interested in the class discrimination strength of the

genes, since we do not want to select too many genes

that have similar class discrimination strength. Note

that genes having a similar expression pattern would

certainly have similar class discrimination strength,

but the other way around is not necessarily true.

Therefore, we define a new measure trying to bet-

ter capture the difference in the class discrimination

strength between two genes.

Assume there are p genes and n samples in the

microarray training dataset, and these n samples be-

long to L distinct classes. Let aij denote the ex-

pression value of gene i in sample j. This way, the

training dataset can be represented as a matrix

Ap×n = (aij)p×n.

Let C1, C2, . . . , CL denote the L classes, and nq =

|Cq |, for q = 1, 2, . . . , L. Let aiq be the mean expres-

sion value of gene i in class Cq : aiq = 1

nq

∑

j∈Cq
aij ,

for q = 1, 2, . . . , L. The centroid matrix is thus

Ap×L = (aiq)p×L.

The discrimination strength vector of gene i is de-

fined as

vi = 〈|aiq1
− aiq2

| | 1 ≤ q1 < q2 ≤ L〉,

where the order of 1

2
L(L − 1) vector entries is fixed

the same for all genes, for example the lexicographi-

cal order. After all the discrimination strength vec-

tors have been calculated, the k-means algorithm8

is applied to cluster these p genes into k clusters

using their discrimination strength vectors. Essen-

tially, k-means is a centroid-based clustering algo-

rithm that partitions the genes based on their pair-

wise distances. We adopt both the Euclidean dis-

tance and the Pearson correlation coefficient in our

experiments. Again, we have tested several values of

k in the k-means algorithm (cf. Section 4.1) and we

have set it to 100 as default.

The following small example is cut from the CAR

dataset (cf. Section 3.1 and Section 4.3), including

4 genes and their expression values in 9 samples: G1

= 40794 at, G2 = 660 at, G3 = 32200 at, and G4 =

41238 s at. These 9 samples belong to three classes,

C1, C2, C3, and C1 = {S1, S2}, C2 = {S3, S4, S5},

and C3 = {S6, S7, S8, S9}. A4×9 =















S1 S2 S3 S4 S5 S6 S7 S8 S9

G1 1.301 1.301 1.301 1.301 1.301 4.212 4.123 4.005 4.301

G2 1.301 1.301 1.301 1.301 1.301 3.914 3.954 3.835 4.112

G3 1.531 1.491 1.301 1.301 1.301 3.809 4.032 3.684 3.842

G4 1.301 1.301 3.869 4.270 4.459 1.301 1.301 1.301 1.301















.

It follows that the centroid matrix A4×3 is

A4×3 =















C1 C2 C3

G1 1.301 1.301 4.160

G2 1.301 1.301 3.954

G3 1.511 1.301 3.842

G4 1.301 4.199 1.301















,
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and the discrimination strength vectors are

v1 = 〈0.000, 2.859, 2.859〉,

v2 = 〈0.000, 2.653, 2.653〉,

v3 = 〈0.210, 2.331, 2.541〉,

v4 = 〈2.898, 0.000, 2.898〉.

Therefore, the pairwise Euclidean distances are

d(1, 2) = 0.291, d(1, 3) = 0.651, d(2, 3) = 0.400,

d(1, 4) = 4.071, d(2, 4) = 3.937, and d(3, 4) = 3.576.

These distances indicate that the first three genes

have very similar discriminatory strength, while gene

41238 s at has different discriminatory strength (cf

Section 4.3).

2.5. The Complete EEGS-Based Gene

Selection Methods

Given a microarray training dataset containing p

genes and n samples in L classes, an EEGS-based

gene selection method first calls the k-means algo-

rithm (with k = 100) to cluster genes. Next, depend-

ing on the detailed single gene scoring method inte-

grated in the method, which is one of F-test, Cho and

GS, it calls the single gene scoring method to score

all the genes and sort them into non-increasing order.

Using this gene order and the gene cluster informa-

tion, the EEGS-based method selects a pre-specified

number, x, of top ranked genes with the constraint

that there are at most T genes per cluster can be

selected. In more details, it scans through the gene

order and picks up a gene only if there are less than

T genes from the same cluster been selected. These

x selected genes are then fed to classifier construc-

tion, either the SVM classifier or the KNN classifier.

In our experiments, we have tested x ranging from 1

to 80 and several values for T (cf. Section 3.2). We

have set T = 1 as default (cf. Section 4.1).

Depending on the single gene scoring method

integrated into the EEGS-based gene selection

method, which is one of F-test, Cho and GS, the

method is referred to as EEGS-F-test, EEGS-Cho

and EEGS-GS, respectively.

3. Experimental Results

We compare the three EEGS-based gene selection

methods with the three ordinary gene selection meth-

ods, measured by the classification accuracy. For

ease of presentation, we separate the 5-Fold cross

validation results and the LOO cross validation re-

sults. Note that we have adopted two distance mea-

sures in the k-means clustering algorithm. We have

a broader collection of experimental results, but here

report only those based on the Euclidean distance,

as there is essentially no difference between the re-

sults based on the Pearson correlation coefficient (cf.

Section 4.1). Note also that we have adopted two

classifiers, a linear kernel SVM classifier and a KNN

classifier. We choose to plot their classification ac-

curacies together labeled by different notations, for

instance, EEGS-Cho-KNN labels the accuracies of

the KNN classifier. The experiments are done on two

real cancer microarray datasets, CAR10 and LUNG,9

whose details are described in the following subsec-

tion.

3.1. Dataset Descriptions

The CAR dataset contains 174 samples in eleven

classes: prostate, bladder/ureter, breast, colorectal,

gastroesophagus, kidney, liver, ovary, pancreas, lung

adenocarcinomas, and lung squamous cell carcinoma,

which have 26, 8, 26, 23, 12, 11, 7, 27, 6, 14, and 14

samples, respectively.10 Each sample originally con-

tained 12,533 genes. We preprocessed the dataset

as described in Su et al.10 to include only those

probe sets whose maximum hybridization intensity

in at least one sample is ≥ 200; Subsequently, all hy-

bridization intensity values ≤ 20, including negative

hybridization intensity values, were raised to 20, and

the values were log transformed. After preprocess-

ing, we obtained a dataset of 9,182 genes.

The LUNG dataset9 contains in total 203 sam-

ples in five classes: adenocarcinomas, squamous

cell lung carcinomas, pulmonary carcinoids, small-

cell lung carcinomas and normal lung, which have

139, 21, 20, 6, 17 samples, respectively. Each sam-

ple originally had 12,600 genes. A preprocessing

step which removed genes with standard deviations

smaller than 50 expression units, produced a dataset

with 3,312 genes.9

3.2. Cross Validation Classification

Accuracies

The classification accuracies reported here were ob-

tained under the default setting which uses Euclidean

distance, k = 100 in the k-means clustering algo-

rithm, and at most T = 1 gene per cluster could be
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selected. On each of the two datasets, all six gene

selection methods, F-test, Cho, GS, EEGS-F-test,

EEGS-Cho, and EEGS-GS, were run and both the

5-Fold and LOO cross validation classification accu-

racies were collected and plotted in Figures 1 – 4.

Obviously, these plots show that regardless of

which cross validation scheme and which classi-

fier were used, the classification accuracies of the

EEGS-based gene selection methods were signifi-

cantly higher than that of their non-EEGS-based

counterparts. Typically, on the CAR dataset, the

classification accuracies of the EEGS-based methods

were unbelievably higher — though the difference

between the classification accuracies became smaller

with the increasing number of selected genes, it re-

mained to be more than 10%. From Figures 1 and

2, among the single gene scoring methods, another

observation is that the GS method performed bet-

ter than the Cho method and the F-test method.

The EEGS-based methods had the same perfor-

mance tendency on the CAR dataset. On the LUNG

dataset, similar results were obtained, although the

performance differences between the EEGS-based

methods and the non-EEGS-based methods were

smaller than those on the CAR dataset.
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Fig. 1. The 5-Fold cross validation classification accuracies
of the six gene selection methods on the CAR dataset.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

A
cc

ur
ac

y

The Number of Selected Genes

LOO Classification Accuracy on CAR DatasetEEGS-F-test-KNN
EEGS-F-test-SVM

F-test-KNN
F-test-SVM

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

A
cc

ur
ac

y

The Number of Selected Genes

LOO Classification Accuracy on CAR DatasetEEGS-Cho-KNN
EEGS-Cho-SVM

Cho-KNN
Cho-SVM

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

A
cc

ur
ac

y

The Number of Selected Genes

LOO Classification Accuracy on CAR DatasetEEGS-GS-KNN
EEGS-GS-SVM

GS-KNN
GS-SVM

Fig. 2. The LOO cross validation classification accuracies of
the six gene selection methods on the CAR dataset.
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Fig. 3. The 5-Fold cross validation classification accuracies
of the six gene selection methods on the LUNG dataset.
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Fig. 4. The LOO cross validation classification accuracies of
the six gene selection methods on the LUNG dataset.
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Fig. 5. Plots of average standard deviations of the 5-Fold
classification accuracies of the EEGS-based and the non-
EEGS-based gene selection methods, combined with the KNN

and the SVM classifiers, on the CAR dataset (top) and LUNG
dataset (bottom), respectively.

We have also calculated the standard deviations

of the 5-Fold cross validation classification accura-

cies. Note that the accuracies plotted in Figures 1

and 3 were averages over 100. Figure 5 plots the av-

erage standard deviations of the EEGS-based meth-

ods and the non-EEGS-based methods, on the CAR

and the LUNG datasets, respectively. Namely, the

EEGS-KNN plot records the average standard devi-

ations of the three EEGS-based methods (EEGS-F-

test, EEGS-Cho and EEGS-GS) combined with the

KNN classifier, and the non-EEGS-SVM plot records

the average standard deviations of the three non-

EEGS-based methods (F-test, Cho and GS) com-

bined with the SVM classifier, and so on. These

results show that the standard deviations of the

classification accuracies of the EEGS-based methods

were even smaller than those of the non-EEGS-based

methods, indicating that the EEGS-based methods

performed more consistently.

Having observed the performance differences be-

tween the EEGS-based and the non-EEGS-based

methods, we wanted to tell if they were statisti-

cally significant. Analysis of variance (ANOVA) is

a statistical procedure to test hypotheses about dif-

ferences between two or more means. We chose the

ANOVA tools of the SPSS system (http://spss.

com/). In addition to other parameters, ANOVA

gives a significance, or p value, of the hypothesis that

the two methods under comparison have no differ-

ence, at a specified confidence level, which was set to

95% in our experiments. Low p values, normally less

than 0.001, indicate that the hypothesis is false, that

is, the two methods do have difference. ANOVA also

gives a confidence interval for the difference of the ac-

curacy means associated with the two methods, and

if the interval contains 0, then the two methods did

not have much difference; Otherwise, the hypothesis

is false. We collected all the detailed ANOVA values

for each EEGS-based gene selection method versus

the non-EEGS-based method, combined with a clas-

sifier. The values on the CAR dataset are in Table 1,

for four different numbers of selected genes. The val-

ues on the LUNG dataset are not included because of

space, but they are available upon request. Clearly,

these values all show that the EEGS-based methods

were significant better than their non-EEGS-based

counterparts.

4. Discussion

4.1. Gene Clustering

We adopted the k-means algorithm for gene cluster-

ing, in which k, the number of expected clusters, has
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Table 1. The ANOVA analysis of performance differences between the EEGS-based gene selection methods and their
non-EEGS-based counterparts, respectively. A lower than 0.001 p-value and an interval [L,U ] excluding 0 both indicate that the
EEGS-based gene selection method and its non-EEGS-based counterpart performed significantly different. The dataset is CAR
and the numbers of selected genes are 20, 40, 60 and 80.

#Genes = 20 #Genes = 40 #Genes = 60 #Genes = 80
p L U p L U p L U p L U

Cho-KNN 0.000 0.3823 0.4236 0.000 0.2989 0.3400 0.000 0.1929 0.2285 0.000 0.1279 0.1650
Cho-SVM 0.000 0.3606 0.4069 0.000 0.3499 0.3893 0.000 0.2329 0.2725 0.000 0.1414 0.1761

F-test-KNN 0.000 0.2835 0.3366 0.000 0.1225 0.1638 0.000 0.0969 0.1139 0.000 0.0560 0.0967
F-test-SVM 0.000 0.3098 0.3654 0.000 0.1391 0.1774 0.000 0.0882 0.1245 0.000 0.0625 0.0949
GS-KNN 0.000 0.3472 0.4030 0.000 0.1048 0.1571 0.000 0.0450 0.0842 0.000 0.0228 0.0540
GS-SVM 0.000 0.3780 0.4290 0.000 0.1005 0.1512 0.000 0.0608 0.1005 0.000 0.0281 0.0583

to be set beforehand. Obviously, the value of k will

affect the sizes of resultant clusters, and therefore

will affect T ultimately, which is the maximum num-

ber of genes per cluster to be selected. We chose to

empirically determine these two values. To this end,

we experimented with 15 values for k: from 10 to

150 (in tens), and five values for T : 1, 2, 3, 4 and

5. All three EEGS-based methods combined with

two classifiers were tested on the CAR dataset, un-

der the 5-Fold cross validation, for each combination

of k and T . Associated with each value of T , a clas-

sification accuracy is defined as the mean value of

100 × 3 × 2 × 15 = 9, 000 ones, where there are 100

runs in the 5-Fold cross validation, 3 EEGS-based

methods, 2 classifiers, and 15 values of k in the test.

These classification accuracies, with respect to the

number of selected genes, are plotted in Figure 6

(top), where T = 1 clearly performed the best.
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Fig. 6. The effects of the number of clusters in gene clus-
tering and the maximum number of genes per cluster can be
selected.

Similarly, associated with each value of k, a clas-

sification accuracy is defined as the mean value of

100 × 3 × 2 × 5 = 3, 000 ones, where there are 5

values of T in the test. Again, these classification

accuracies, with respect to the number of selected

genes, are plotted in Figure 6 (bottom), where we

can see that the value of k didn’t really affect the

performance. Since we decided to set the maximum

number of selected genes to be 80, we determined to

set k = 100 and T = 1 as default.
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Fig. 7. The effects of the Euclidean distance and the Pear-
son correlation coefficient in gene clustering.

Another important factor in gene clustering that

might affect its performance is the distance mea-

sure, for which the Euclidean distance and the Pear-

son correlation coefficient are two most commonly

adopted ones. We have experimented with both of

them in the k-means clustering algorithm on the

CAR and the LUNG datasets. With the default

setting for k and T , we collected the 5-Fold clas-

sification accuracies which are the mean values of
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100 × 3 × 2 = 600 ones and plotted them in Fig-

ure 7. Clearly seen, the detailed distance measure

did not seem to affect the overall performance of the

EEGS-based methods, in terms of their classification

accuracy. Therefore, we chose the Euclidean distance

as our default setting.

4.2. Datasets

Note that in the EEGS-based gene selection meth-

ods, a discrimination strength vector is computed

for every gene, and genes are clustered using the

Euclidean distance defined on their discrimination

strength vectors. The main intention for such clus-

tering is to limit the number of genes that have very

similar class discrimination strength to be selected,

and thus to provide space for other individually-less

but collectively-more differentially expressed genes

to participate in the class prediction. This goal

would not be achieved when there are only two

classes in the dataset (binary classification), which

would mean that the discrimination strength vectors

have only one entry and the EEGS-based method re-

duces to its component basic gene selection method.

For similar reasons, we suspect that the EEGS-

based gene selection methods would work well when

the number of classes in the dataset is three. The

CAR and the LUNG datasets contain eleven and

five classes, respectively, and therefore the discrim-

ination strength vectors have 55 and 10 entries, re-

spectively. The EEGS-based gene selection methods

all performed excellent on them.

For various reasons, microarray datasets are of-

ten unbalanced, that is, the sizes of the classes are

highly variable. For example, in the LUNG dataset,

the maximum class size is 139 while the minimum

class size is only 6. Since it is possible that dur-

ing the 5-Fold cross validation the random partition

produces a training dataset containing only a few

samples, or maybe even none, from a small class, the

testing would make mistakes on the samples from the

same class. To verify how much the dataset unbal-

ance would affect the performance of a gene selection

method, we removed the classes of sizes smaller than

10 from the CAR and the LUNG datasets to produce

two reduced but more balanced datasets, denoted as

CARr and LUNGr, respectively. Consequently, the

CARr and the LUNGr datasets contain 153 samples

in 8 classes and 197 samples in 4 classes, respectively.

We then ran all six methods combined with both the

KNN classifier and the SVM classifier on the full and

the reduced datasets, and plotted the average clas-

sification accuracies (each over three methods with

two classifiers, i.e., six values) in Figure 8. In the fig-

ure, one can see that the performance of the EEGS-

based methods did not change a lot on the reduced

CARr and the LUNGr datasets, compared with their

performance on the full datasets. Interestingly, for

the non-EEGS-based methods, their performance in-

creased significantly on the CARr dataset, but not

on the LUNGr dataset. Nevertheless, these results

show that the EEGS-based methods performed more

stable (and better) than the non-EEGS-based meth-

ods on unbalanced datasets. One of the possible rea-

sons is that the EEGS-based methods might be able

to select some genes that are signatures of the sam-

ples in the small classes, for which further studies are

needed to understand better.
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Fig. 8. Classification accuracies of the EEGS-based and the
non-EEGS-based methods on the full and reduced datasets,
where EEGS-Full plots the average classification accuracies of
the EEGS-based methods on the full dataset.

To further understand these two datasets, we re-

fined the statistics to collect the classification preci-

sion and recall for each class in the 5-Fold cross val-

idation. We fixed the number of selected genes to

be 20. For each class, the classification precision is

defined as the number of correctly labeled samples

divided by the total number of samples predicted to

be in the class; and the classification recall is defined

as the number of correctly labeled samples divided

by the size of the class. Again, we took the pre-
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cision and recall of the EEGS-based methods to be

the average over six values, and similarly for the non-

EEGS-based methods. All six methods were run on

both the full and the reduced datasets and the pre-

cision and recall on the CAR dataset are plotted in

Figure 9, and on the LUNG dataset are plotted in

Figure 10, in which the x-axis represents the class.
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Fig. 9. The classification precision and recall on the classes
in the full and reduced CAR dataset. Class label abbrevia-
tions, where the numbers are the class sizes: ov*: ovary (27),
pr*: prostate (26), br*: breast (26), co*: colorectal (23), la*:
lung adenocarcinomas (14), ls*: lung squamous cell carcinoma

(14), ga*: gastroesophagus (12), ki*: kidney (11), bu*: blad-

der/ureter (8), li*: liver (7), pa*: pancreas (6).
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Fig. 10. The classification precision and recall on the classes
in the full and reduced LUNG dataset. Class label abbrevi-
ations, where the numbers are the class sizes: ad*: adeno-

carcinomas (139), sc*: squamous cell lung carcinomas (21),

pu*: pulmonary carcinoids (20), nl*: normal lung (17), sl*:
small-cell lung carcinomas (6).

Surprisingly, the performance of either of the

EEGS-based methods or the non-EEGS-based meth-

ods was not directly related to the class size, for ex-

ample, both the precision and recall were high on the

smallest class in each dataset. On the other hand,

both precision and recall for the non-EEGS-based

methods were low on the class bladder/ureter in the

CAR dataset, while those of the EEGS-based meth-

ods were significantly higher. This demonstrates

the extreme class prediction power of the genes se-

lected by the EEGS-based methods, besides the fact

that the EEGS-based methods performed consis-

tently better than the non-EEGS-based methods on

every class.

4.3. A Case Study on the CAR Dataset

The EEGS-based gene selection methods are de-

signed to not select too many genes having simi-

lar class discrimination strength, so as to consider

individually-less but collectively-more differentially

expressed genes. In this sense, some selected genes

might be lower in the gene order, but have strength

to discriminate some classes on which its preceding

genes might not do well. To examine if this indeed

happened, we collected more detailed results on the

first 10 genes selected by F-test and EEGS-F-test, re-

spectively. The 5-Fold cross validation classification

accuracies of the SVM classifier built on the first x

genes were also collected, for x = 1, 2, . . . , 10. We

summarized the results in Table 2, in which column

‘Probe Set’ records the probe set (gene) id in the

CAR dataset, column ‘R’ records the rank of the

gene in the gene order by F-test, and column ‘Accu-

racy’ records the classification accuracy of the gene

subset up to the gene at the row.

Note that the third gene (probe set) selected by

EEGS-F-test, 765 s at, has a rank 17, which was thus

not selected by F-test. The classification accuracy of

the top 10 genes selected by F-test was only 30.63%,

while adding the third gene 765 s at in EEGS-F-test

lifted the classification accuracy to 42.18%, already

significantly higher than 30.63%. On average, the

contribution of each gene, except the first, selected

by EEGS-F-test was 6.10% in terms of classifica-

tion accuracy; the contribution of each gene, except

the first, selected by F-test was only 1.23%. These

figures suggested that when the number of selected
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genes was fixed, the genes selected by EEGS-F-test

had much higher class discrimination strength com-

pared to the genes selected by F-test.

Table 2. The first 10 genes selected by the EEGS-F-test and
the F-test methods on the CAR dataset, respectively, and the
respective 5-Fold cross validation classification accuracies of the

SVM classifiers built on the genes. Column ‘R’ records the rank
of the gene in the gene order by F-test, and column ‘Accuracy’
records the classification accuracy of the gene subset up to the
gene at the row.

EEGS-F-test-SVM F-test-SVM

Probe Set R Accuracy Probe Set R Accuracy

40794 at 1 19.54% 40794 at 1 19.54%
41238 s at 4 28.91% 660 at 2 25.46%

765 s at 17 42.18% 32200 at 3 25.40%
1500 at 21 60.52% 41238 s at 4 30.00%

35220 at 24 64.54% 34941 at 5 30.69%
32771 at 27 68.62% 41468 at 6 30.52%
34797 at 38 70.75% 36141 at 7 30.12%
35194 at 50 73.56% 617 at 8 30.35%
36806 at 52 73.16% 37812 at 9 30.29%
40511 at 63 74.48% 217 at 10 30.63%

5. Conclusions and Future Works

We have proposed to differentiate the class discrim-

ination strength between two genes by defining a

novel distance between their discrimination strength

vectors, based on their expression values. With such

a distance measurement, we clustered genes and only

allowed a limited number of genes per cluster to be

selected for class prediction purpose. Through com-

bining this gene cluster information with a single

gene scoring method, we were able to efficiently se-

lect a subset of genes that collectively, improve the

determination of class membership. The experimen-

tal results on two real microarray datasets confirmed

our expectations. These results also demonstrated

that the EEGS-based gene selection methods were

more stable and had significantly higher classifica-

tion precision and recall on smaller classes, where

the non-EEGS-based methods normally performed

poorly. The EEGS-based methods performed par-

ticularly well when there are many classes in the

dataset. One immediate way to extend this work is

to closely examine whether or not the selected genes

by the EEGS-based methods, but not by the non-

EEGS-based methods, are biologically meaningful.

Acknowledgments

This research is supported in part by AHFMR (to

LX), AICML (to RG), CFI (to GL), iCore (to YS

and RG), NSERC (to RG, MS and GL) and the Uni-

versity of Alberta (to MS).

References

1. T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard,

M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh,

J. R. Downing, M. A. Caligiuri, C. D. Bloomfield,

and E. S. Lander. Molecular classification of cancer:

Class discovery and class prediction by gene expres-

sion monitoring. Science, 286:531–537, 1999.

2. P. Baldi and A. D. Long. A Bayesian framework for

the analysis of microarray expression data: Regular-

ized t-test and statistical inferences of gene changes.

Bioinformatics, 17:509–519, 2001.

3. S. Dudoit, J. Fridlyand, and T. P. Speed. Compar-

ison of discrimination methods for the classification

of tumors using gene expression data. Journal of the

American Statistical Association, 97:77–87, 2002.

4. J. Cho, D. Lee, J. H. Park, and I. B. Lee. New gene

selection for classification of cancer subtype consid-

ering within-class variation. FEBS Letters, 551:3–7,

2003.

5. K. Yang, Z. Cai, J. Li, and G.-H. Lin. A stable gene

selection in microarray data analysis. BMC Bioin-

formatics, 7:228, 2006.

6. M. Xiong, X. Fang, and J. Zhao. Biomarker iden-

tification by feature wrappers. Genome Research,

11:1878–1887, 2001.

7. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik.

Gene selection for cancer classification using sup-

port vector machines. Machine Learning, 46:389–

422, 2002.

8. F. Blanchot-Jossic, A. Jarry, D. Masson, K. Bach-

Ngohou, J. Paineau, M. G. Denis, C. L. Laboisse,

and J. F. Mosnier. Up-regulated expression of

ADAM17 in human colon carcinoma: co-expression

with EGFR in neoplastic and endothelial cells. Onco-

gene, 207:156–163, 2005.

9. A. Bhattacharjee, W. G. Richards, J. Staunton,

C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti,

R. Bueno, M. Gillette, M. Loda, G. Weber, E. J.

Mark, E. S. Lander, W. Wong, B. E. Johnson, T. R.

Golub, D. J. Sugarbaker, and M. Meyerso. Classifica-

tion of human lung carcinomas by mRNA expression

profiling reveals distinct adenocarcinoma subclasses.

Proceedings of National Academy of Sciences of the

United States of America, 98:13790–13795, 2001.

10. A. I. Su, J. B. Welsh, L. M. Sapinoso, S. G. Kern,

P. Dimitrov, H. Lapp, P. G. Schultz, S. M. Pow-

ell, C. A. Moskaluk, H. F. Frierson, Jr., and G. M.

Hampton. Molecular classification of human carci-

nomas by use of gene expression signatures. Cancer

Research, 61:7388–7393, 2001.


